• Title/Summary/Keyword: 학술적 텍스트

Search Result 1,089, Processing Time 0.027 seconds

A Study on Developing a Metadata Search System Based on the Text Structure of Korean Studies Research Articles (한국학 연구 논문의 텍스트 구조 기반 메타데이터 검색 시스템 개발 연구)

  • Song, Min-Sun;Ko, Young Man;Lee, Seung-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.155-176
    • /
    • 2016
  • This study aims to develope a scholarly metadata information system based on conceptual elements of text structure of Korean studies research articles and to identify the applicability of text structure based metadata as compared with the existing similar system. For the study, we constructed a database(Korean Studies Metadata Database, KMD) with text structure based on metadata of Korean Studies journal articles selected from the Korea Citation Index(KCI). Then we verified differences between KCI system and KMD system through search results using same keywords. As a result, KMD system shows the search results which meet the users' intention of searching more efficiently in comparison with the KCI system. In other words, even if keyword combinations and conditional expressions of searching execution are same, KMD system can directly present the content of research purposes, research data, and spatial-temporal contexts of research et cetera as search results through the search procedure.

Application Development for Text Mining: KoALA (텍스트 마이닝 통합 애플리케이션 개발: KoALA)

  • Byeong-Jin Jeon;Yoon-Jin Choi;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.117-137
    • /
    • 2019
  • In the Big Data era, data science has become popular with the production of numerous data in various domains, and the power of data has become a competitive power. There is a growing interest in unstructured data, which accounts for more than 80% of the world's data. Along with the everyday use of social media, most of the unstructured data is in the form of text data and plays an important role in various areas such as marketing, finance, and distribution. However, text mining using social media is difficult to access and difficult to use compared to data mining using numerical data. Thus, this study aims to develop Korean Natural Language Application (KoALA) as an integrated application for easy and handy social media text mining without relying on programming language or high-level hardware or solution. KoALA is a specialized application for social media text mining. It is an integrated application that can analyze both Korean and English. KoALA handles the entire process from data collection to preprocessing, analysis and visualization. This paper describes the process of designing, implementing, and applying KoALA applications using the design science methodology. Lastly, we will discuss practical use of KoALA through a block-chain business case. Through this paper, we hope to popularize social media text mining and utilize it for practical and academic use in various domains.

A Non-morphological Approach for DBpedia URI Spotting within Korean Text (한국어 텍스트의 개체 URI 탐지: 품사 태깅 독립적 개체명 인식과 중의성 해소)

  • Kim, Youngsik;Hahm, Younggyun;Kim, Jiseong;Hwang, Dosam;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.100-106
    • /
    • 2014
  • URI spotting (탐지) 문제는 텍스트에 있는 단어열 중에서 URI로 대표되는 개체(entity)에 해당되는 것을 탐지하는 것이다. 이 문제는 두 개의 작은 문제를 순차적으로 해결하는 과제이다. 즉, 첫째는 어느 단어열이 URI에 해당하는 개체인가를 인식하는 것이고, 둘째는 개체 중의성 해소 문제로서 파악된 개체가 복수의 URI에 해당할 수 있는 의미적 모호성이 있을 때 그 URI중 하나를 선택하여 모호성을 해소하는 것이다. 이 논문은 디비피디아 URI를 대상으로 한다. URI 탐지 문제는 개체명 인식 문제와 비슷하나, URI(예를 들어 디비피디아 URI, 즉 Wikipedia 등재어)에 매핑될 수 있는 개체로 한정되므로 일반적인 개체명 인식 문제에서 단어열의 품사열이 기계학습의 자질로 들어가는 방법론과는 다른 자질을 사용할 수 있다. 이 논문에서는 한국어 텍스트를 대상으로 한국어 디비피디아 URI 탐지문제로서 SVM을 이용한 개체경계 인식 방법을 제시하여, 일반적 개체명 인식에서 나타나는 품사태거의 오류파급효과를 없애고자 한다. 또한 개체중의성 해소 문제는 의미모호성이 주변 문장들의 토픽에 따라 달라지므로, LDA를 활용하며 이를 영어 디비피디아 URI탐지에서 쓰인 방법들과 비교한다.

  • PDF

Emotion Recognition from Natural Language Text Using Predicate Logic Form (Predicate Logic Form을 이용한 자연어 텍스트로부터의 감정인식)

  • Seol, Yong-Soo;Kim, Dong-Joo;Kim, Han-Woo;Park, Jung-Ki
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.411-412
    • /
    • 2010
  • 전통적으로 자연어 텍스트로부터의 감정인식 연구는 감정 키워드에 기반한다. 그러나 감정 키워드만을 이용하면 자연어 문장이 원래 갖고 있는 통사정보나 의미정보는 잃어버리게 된다. 이를 극복하기 위해 본 논문에서는 자연어 텍스트를 Predicate Logic 형태로 변환하여 감정 정보처리의 기반데이터로 사용한다. Predicate Logic형태로 변환하기 위해서 의존 문법 구문분석기를 사용하였다. 이렇게 생성된 Predicate 데이터 중 감정 정보를 갖고 있는 Predicate만을 찾아내는데 이를 위해 Emotional Predicate Dictionary를 구축하였고 이 사전에는 하나의 Predicate마다 미리 정의된 개념 클래스로 사상 시킬 수 있는 정보를 갖고 있다. 개념 클래스는 감정정보를 갖고 있는지, 어떤 감정인지, 어떤 상황에서 발생하는 감정인지에 대한 정보를 나타낸다. 자연어 텍스트가 Predicate으로 변환되고 다시 개념 클래스로 사상되고 나면 KBANN으로 구현된 Lazarus의 감정 생성 규칙에 적용시켜 최종적으로 인식된 감정을 판단한다. 실험을 통해 구현된 시스템이 인간이 인식한 감정과 약 70%이상 유사한 인식 결과를 나타냄을 보인다.

  • PDF

A WordNet-based Feature Merge Method for HyperText Classification (하이퍼텍스트 문서의 자동분류를 위한 워드넷 기반 특징 합병 기법)

  • Roh, Jun-Ho;Kim, Han-Joon;Chang, Jae-Young
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.406-409
    • /
    • 2012
  • 본 논문은 하이퍼텍스트 문서의 자동분류 성능을 높이기 위한 새로운 접근법을 제시한다. 하이퍼텍스트 문서는 일반 문서와 달리 하이퍼링크로 서로 연결된 구조를 가진다. 이 하이퍼링크 정보는 대상문서와 연관도가 높은 정보를 가지고 있으며, 이러한 링크 정보로부터 특징을 보다 잘 선별하기 위해서는 보다 정밀한 접근법이 필요하다. 본 논문은 단어간 의미 유사도를 기반으로 하이퍼텍스트 링크 정보를 활용한 특징 가공기법을 제안한다. 제안 기법은 하이퍼링크 문서로부터 대상문서와 연관도가 높은 특징을 추출하기 위해 단어간 유사도 함수를 사용하며, 유사도 함수는 워드넷의 상/하위어 관계를 이용한다. 그리고 추출된 특징들 중 의미적으로 비슷한 개념의 특징들을 합병함으로써 의미적으로 보다 견고한 분류 모델을 구축한다. 제안 기법을 검증하기 위해 Web-KB 문서집합을 이용하여 실험을 수행하였고 실험 결과 기존 방법보다 우수한 성능을 보였다.

A Parallel Implementation of the Order-Preserving Multiple Pattern Matching Algorithm using Fingerprints of Texts (텍스트의 핑거프린트를 이용한 순위다중패턴매칭 알고리즘 병렬 구현)

  • Park, Somin;Kim, Youngho;Sim, Jeong Seop
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.57-60
    • /
    • 2020
  • 순위다중패턴매칭문제는 길이가 n인 텍스트 T와 패턴들의 집합 P' = {P1,P2…,Pk}가 주어졌을 때, P'에 속하는 패턴들과 상대적인 순위가 일치하는 T의 모든 부분문자열들의 위치를 찾는 문제이다. P'에서 가장 짧은 패턴의 길이가 m, 가장 긴 패턴의 길이를 $\bar{m}$, 모든 패턴들의 길이의 합을 M, q개의 연속된 문자들을 q-그램이라 할 때, 기존에 텍스트의 핑거프린트를 이용하여 순위다중패턴매칭문제를 $O(q!+nqlogq+Mlog\bar{m}+nM)$ 시간에 해결하는 알고리즘이 제시되었다. 본 논문에서는 텍스트의 핑거프린트를 활용하여 O(max(q!,M,n))개의 스레드를 이용하여 순위다중패턴매칭문제를 평균적으로 $O(\bar{m}+qlogq+n/q!)$ 시간에 해결하는 병렬 구현 방법을 제시한다. 실험 결과, n = 1,000,000, k = 1,000, m = 5, q = 3일 때, 본 논문에서 제시하는 병렬 구현 방법은 기존의 순차 알고리즘보다 약 19.8배 빠르게 수행되었다.

A Study on Proposal of Emotional expression for Online instant Messenger (온라인 인스턴트 메신저의 감정표현 방법 제안에 관한 연구)

  • Kim, Ju-Yong;Soh, Yeon-Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.48-54
    • /
    • 2007
  • 컴퓨터 네트워크의 발달로 인터넷이 실생활이 되면서, 온라인에서 인스턴트 메신저를 이용한 커뮤니케이션 방식이 확대되고 있다. 이러한 메신저에서는 이모티콘 및 플래시콘 혹은 윙크 등 과 같은 다양한 방식을 통해 감정을 표현할 수 있도록 제안하고 있다. 하지만, 아직까지 온라인의 감정표현은 흥미위주이며, 오프라인의 다양한 감정표현에 비해서 제한적이다 따라서 오프라인에서의 다양한 사용자 감정표현을 온라인에서 표현해 줄 수 있는 새로운 형태의 감성 커뮤니케이션 방법이 필요하다. 본 연구에서는 온라인 인스턴트 메신저의 사용행태 이해를 통해서 사용자들의 요구사항을 파악하고 이를 통해 제안할 수 있는 커뮤니케이션 방법을 모색하고자 한다. 실생활에서 사용자의 감정표현 방법을 바탕으로 온라인 메신저에 적용하여 새로운 감성 커뮤니케이션 방법을 제안하는 연구로, 감정어휘와 표현방법의 사용자 조사를 통해 감정표현 방법에 대한 컨셉을 제안하였다. 우선 메신저 사용 행태와 요구사항 도출을 위한 사용자 FGI를 진행하였다. 사용자 FGI로 얻어진 사용자들의 메신저 사용행태를 통해, 텍스트와 모션을 활용하는 '텍스트콘'을 컨셉 아이디어로 도출하였다. 아이디어에 적용하기 위해 모션을 감정으로 인해 파생되는 행동과 체감각 요소로 구분하였다. 구체적인 표현방법 및 적용 요소를 추출하기 위한 방법으로 온라인 설문조사를 실시하였으며 감정어휘와 표현방법(행동, 체감각)을 추출하였다. 추출된 내용은 '사용자 참여 관찰' 기법을 활용하여, 사용어휘와 행동을 정리하고 구제화하여 그 결과를 '텍스트콘'에 적용하였다. 본 연구는 사용자들이 메신저를 이용한 감정표현에 있어 텍스트를 선호하고 텍스트에 대한 요구사형에 있음을 확인하였으며, 감정표현 컨셉 아이디어 '텍스트콘'을 도출하였다. '사용자 참여 관찰' 기법을 활용하여 기존의 이모티콘으로 대표되는 그래픽 아이콘 중심의 사용자 감정표현 방법을 보조해줄 수 있는 방법으로 실생활에서 사용자가 표현하고 받아들이는 신체언와 행동을 적용하였다는 것에 그 의의가 있다. 또한, 감정에 의한 생리적 반응 요소를 외적인 반응과 내적인 반응으로 구분하여, '체감각'이라고 하는 내적반응을 중심표현방법으로 삼아, 기존과는 다른 시각으로 접근할 수 있었다.

  • PDF

Scene Text Extraction in Natural Images Using Color Variance Feature (색 변화 특징을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 송영자;최영우
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1835-1838
    • /
    • 2003
  • Texts in natural images contain significant and detailed informations about the images. Thus, to extract those texts correctly, we suggest a text extraction method using color variance feature. Generally, the texts in images have color variations with the backgrounds. Thus, if we express those variations in 3 dimensional RGB color space, we can emphasize the text regions that can be hard to be captured with a method using intensity variations in the gray-level images. We can even make robust extraction results with the images contaminated by light variations. The color variations are measured by color variance in this paper. First, horizontal and vertical variance images are obtained independently, and we can fine that the text regions have high values of the variances in both directions. Then, the two images are logically ANDed to remove the non-text components with only one directional high variance. We have applied the proposed method to the multiple kinds of the natural images, and we confirmed that the proposed feature can help to find the text regions that can he missed with the following features - intensity variations in the gray-level images and/or color continuity in the color images.

  • PDF

Topographic Non-negative Matrix Factorization for Topic Visualization from Text Documents (Topographic non-negative matrix factorization에 기반한 텍스트 문서로부터의 토픽 가시화)

  • Chang, Jeong-Ho;Eom, Jae-Hong;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.324-329
    • /
    • 2006
  • Non-negative matrix factorization(NMF) 기법은 음이 아닌 값으로 구성된 데이터를 두 종류의 양의 행렬의 곱의 형식으로 분할하는 데이터 분석기법으로서, 텍스트마이닝, 바이오인포매틱스, 멀티미디어 데이터 분석 등에 활용되었다. 본 연구에서는 기본 NMF 기법에 기반하여 텍스트 문서로부터 토픽을 추출하고 동시에 이를 가시적으로 도시하기 위한 Topographic NMF (TNMF) 기법을 제안한다. TNMF에 의한 토픽 가시화는 데이터를 전체적인 관점에서 보다 직관적으로 파악하는데 도움이 될 수 있다. TNMF는 생성모델 관점에서 볼 때, 2개의 은닉층을 갖는 계층적 모델로 표현할 수 있으며, 상위 은닉층에서 하위 은닉층으로의 연결은 토픽공간상에서 토픽간의 전이확률 또는 이웃함수를 정의한다. TNMF에서의 학습은 전이확률값의 연속적 스케줄링 과정 속에서 반복적 파리미터 갱신 과정을 통해 학습이 이루어지는데, 파라미터 갱신은 기본 NMF 기반 학습 과정으로부터 유사한 형태로 유도될 수 있음을 보인다. 추가적으로 Probabilistic LSA에 기초한 토픽 가시화 기법 및 희소(sparse)한 해(解) 도출을 목적으로 한 non-smooth NMF 기법과의 연관성을 분석, 제시한다. NIPS 학회 논문 데이터에 대한 실험을 통해 제안된 방법론이 문서 내에 내재된 토픽들을 효과적으로 가시화 할 수 있음을 제시한다.

  • PDF

Incremental Early Text Classification system for Early Risk Detection (조기 위험 검출을 위한 점진적 조기 텍스트 분류 시스템)

  • Bae, Sohyeun;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.91-96
    • /
    • 2021
  • 조기 위험 검출은 실시간으로 들어오는 텍스트를 순차적으로 처리하면서 해당 대화에 위험이 있는지 조기에 분류하는 작업으로, 정확도 저하를 최소화하는 동시에 가능한 한 빨리 대화를 분류하는 것을 목적으로 한다. 이러한, 조기 위험 검출은 온라인 그루밍 검출, 보이스 피싱 검출과 같은 다양한 영역에 활용될 수 있다. 이에, 본 논문에서는 조기 위험 검출 문제를 정의하고, 이를 평가할 수 있는 데이터 셋과 Latency F1 평가 지표를 소개한다. 또한, 점진적 문장 분류 모듈과 위험 검출 결정 모듈로 구성된 점진적 조기 텍스트 분류 시스템을 제안한다. 점진적 문장 분류 모듈은 이전 문장들에 대한 메모리 벡터와 현재 문장 벡터를 통해 현재까지의 대화를 분류한다. 위험 검출 결정 모듈은 softmax 분류 점수와 강화학습을 기반으로 하여 Read 또는 Stop 판단을 내린다. 결정 모듈이 Stop 판단을 내리면, 현재까지의 대화에 대한 분류 결과를 전체 대화의 분류 결과로 간주하고 작업을 종료한다. 해당 시스템은 micro F1과 Latency F1 지표 각각에서 0.9684와 0.8918로 높은 검출 정확성 및 검출 신속성을 달성하였다.

  • PDF