• Title/Summary/Keyword: 하향 주파수 변환 장치

Search Result 10, Processing Time 0.03 seconds

The Study on the Design and Implementation of SHF band Downconverter of Digital Satellite Communication (디지털위성중계기용 SHF 대역 하향주파수 변환장치 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.427-432
    • /
    • 2017
  • This study describes the design and implementation of SHF band Downconverter Digital Satellite Communication. The SHF band Downconverter unit consists of PLDRO and Frequency converter. In Frequency converter, microstrip BPF and LPF designed through the pre EM simulation are implemented to minimize the unwanted spurious in Frequency converter. Through the pre-simulation analysis of space environment, the possibility of and minimized about the malfunction of equipment and we designed a reliable SHF band Downconverter through simulation for a TID according to the vibration generated during the launch and space radiation environment, and compared pre-simulation of main performance results to test results about main performances of SHF band Downconverter after production.

A Study on the Design and Implementation of EGSE for Digital Satellite Communication (디지털위성중계기용 성능입증장치의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.503-508
    • /
    • 2018
  • This study describes the design and implementation of EGSE for Digital Satellite Communication. The EGSE is a equipment that evaluates digital satellite communication and requires precise and accurate measurement. EGSE consists of a PLDIU and IIU(Instrument Interface Unit), Up/Down converter for SHF band, Modems to verify the Digital Satellite Communication. The EGSE was used for performance verification and space environment test such as thermal vacuum after developing digital satellite communication.

A Study on the Implementation and Design of EGSE for Dehop/Rehop Transponder (대전자전 중계기용 성능 입증 장치의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Bong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.147-152
    • /
    • 2022
  • This study describes the design and implementation of EGSE for Dehop/Rehop Transponder. The EGSE is a equipment that evaluates Dehop/Rehop Transponder and requires precise and accurate measurement. EGSE consists of a PLDIU and IIU(Instrument Interface Unit), Up/Down converter for L band, Modems to verify the Dehop/Rehop Transponder. The EGSE was used for performance verification and space environment test such as thermal vacuum after developing Dehop/Rehop Transponder.

A Study on Adaptive Pilot Beacon for Hard Handoff at CDMA Communication Network (CDMA 통신망의 하드핸드오프 지원을 위한 적응형 파일럿 비콘에 관한 연구)

  • Jeong Ki Hyeok;Hong Dong Ho;Hong Wan Pyo;Ra Keuk Hwawn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.922-929
    • /
    • 2005
  • This paper proposes an adaptive pilot beacon equipment for mobile communication systems based on direct spread spectrum technology which generates the pilot channel for handoff between base stations by using the information acquired from the downstream wireless signal regarding the overhead channel information. Such an adaptive pilot beacon equipment will enable low power operation since among the wireless signals, only the pilot channel will be generated and transmitted. The pilot channel in the downstream link of the CDMA receiver is used to acquire time and frequency synchronization and this is used to calibrate the offset for the beacon, which implies that time synchronization using GPS is not required and any location where forward receive signal can be received can be used as the installation site. The downstream link pilot signal searching within the CDMA receiver is performed by FPGA and DSP. The FPGA is used to perform the initial synchronization for the pilot searcher and DSP is used to perform the offset correction between beacon clock and base station clock. The CDMA transmitter the adaptive pilot beacon equipment will use the timing offset information in the pilot channel acquired from the CDMA receiver and generate the downstream link pilot signal synchronized to the base station. The intermediate frequency signal is passed through the FIR filter and subsequently upconverted and amplified before being radiated through the antenna.

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

Design of the Optimal Phase for the Interpolant Filter in the Second-order Bandpass Sampling System (2차 BPS 시스템의 interpolant 필터에 대한 최적 위상 설계)

  • Baek, Jein
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.132-139
    • /
    • 2016
  • In the bandpass sampling(BPS), the sampling frequency for the analog-to-digital converter is lower than that of the signal to be sampled. Since the BPS operation results in the signal spectrum to be copied on the baseband, it is possible for the frequency down-converter to be conveniently omitted. The second-order BPS system is introduced in order to cancel the aliased interference components from the BPS output that may be generated by the BPS processing. In this paper, we introduce a design method for the optimal phase of the interpolant filter in the second-order BPS system which enables to maximally cancel the aliased components. Being mathematically derived, this method can always be applied independently to the spectral characteristics of the BPS input signal. The performance improvements by the suggested method has been measured statistically with various power spectra of the received signal, and it has been shown that the maximal amount of the improvements reaches up to 5~20 [dB] in comparison with the previous suboptimal algorithm.

The Multiband Interpolant Filter in the Second-order BPS System (2차 BPS 시스템의 다중 대역 interpolant 필터)

  • Kim, Hyuk;Baek, Jein
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.225-230
    • /
    • 2013
  • In a bandpass sampling (BPS), the frequency of the sampler is lower than that of the signal being sampled. In this method, the baseband spectrum directly appears by the sampling operation, so that it is not necessary to use any frequency down-converter, which makes the receiver's hardware simpler. The second-order BPS uses two identical BPS samplers, of which sampling times are offset by each other. By exploiting the relationship between two sampled signals, it can be possible to cancel the aliased signal component or the interference due to the bandpass sampling. In order to cancel the interference, an interpolant filter is used to manipulate the phase characteristics of the BPS sampled signal. In this paper, it is introduced a multiband interpolant filter which can simultaneously cancel multiple interference signals that have been aliased from multiple frequency bands. In case of no need of interference cancellation, another method is suggested to enhance the signal quality by 3dB. A computer simulation has been performed, and the feasibility of the suggested methods has been verified.

Design of Second-order BPS Systems for the Cancellation of Multiple Aliasing (다중 aliasing 소거를 위한 2차 BPS 시스템의 설계)

  • Baek, Jein
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.162-170
    • /
    • 2015
  • In the bandpass sampling (BPS), the sampling frequency is lower than the frequency of the signal to be sampled. In this method, the baseband spectrum can be directly obtained by the sampling operation. This makes the frequency down converter unnecessary as well as the receiver's circuit simpler. In the second-order BPS system, two sampling devices are used. When aliasing occurs due to the sampling operation, the aliased component can be cancelled by combining the two sampled signals. In this paper, it is presented a design method of the second-order BPS system when multiple interferences are simultaneously aliased to the signal component. The optimum phase of the interpolant filter is searched for maximizing the signal-to-interference ratio, and a practical formula for the suboptimal phase is derived in terms of the power spectrum profile of the BPS input. A computer simulation has been performed for the proposed second-order BPS system, and it has been shown that the signal-to-interference ratio can be increased by considering multiple aliasing.

A study on the multiband interpolant filter for the second-order BPS system (2차 BPS 시스템을 위한 다중 대역 interpolant 필터 설계에 대한 연구)

  • Kim, Hyuk;Baek, Jein
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.69-72
    • /
    • 2012
  • In the bandpass sampling(BPS), the sampling frequency is lower than the frequency of the RF(radio frequency) signal being sampled. In this method, the baseband spectrum directly appears by the sampling itself, so that it is not necessary to use any down converter, making the receiver's hardware simpler. The second-order BPS uses two identical BPS samplers operating with an offset timing to each other. By a processing with their two sampled signals, it can be possible to cancel the aliasing or interference component if any due to the bandpass sampling. The interpolant filter, which is to manipulate the phase characteristics of the sampled signal, affects the performance of the cancellation. In this paper, a multiband interpolant filter is introduced, with which multiple interference signals from multiple RF bands can be cancelled simultaneously. We suggest several phase characteristics for the interpolant filter and have evaluated their performances through computer simulations. It has been shown that the filter with a continuous phase function gives the better performance.

  • PDF