• Title/Summary/Keyword: 하한계 값

Search Result 466, Processing Time 0.023 seconds

Estimation of the Lower Explosion Limits Using the Normal Boiling Points and the Flash Points for the Ester Compounds (에스테르화합물에 대한 표준끓는점과 인화점을 이용한 폭발하한계 추산)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.84-89
    • /
    • 2007
  • The lower explosion limit(LEL) is one of the major combustion properties used to determine the fire and explosion hazards of the combustible substances. In this study, the lower explosion limits of the ester compounds were predicted by using the normal boiling points and the flash points based on the liquid thermodynamic theory. As a results, the A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated the LEL for the ester are 8.80 vol% and 0.18 vol%, respectively and the coefficient of correlation was 0.965. From a given results, by the use of the proposed methodology, it is possible to predict the lower explosion limits of the other flammable materials.

Prediction of Lower Explosion Limits of Binary Liquid Mixtures by Means of Solution Thermodynamics (용액열역학에 의한 2성분계 혼합물의 폭발하한계 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.20-25
    • /
    • 2009
  • Low explosion limits of flammable liquid mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult's law, van Laar equation and Wilson equation are shown to be applicable for the prediction of the lower explosion limits for ethylacetate+ethanol and ethanol+toluene systems. The calculated values based on Raoult's law were found to be better than those based on van Laar and Wilson equations.

  • PDF

소성 불안정 이론 및 그 응용

  • 전기찬
    • Journal of the KSME
    • /
    • v.29 no.3
    • /
    • pp.244-252
    • /
    • 1989
  • 평면변형조건에서 성형한계를 빠르고 정확하게 측정할 수 있는 방법을 개발하는 것도 중요하다. 평면변형조건에서의 성형한계를 구하는 데에는 펀치 스트레칭이 주로 이용되지만 그 외에도 여러 가지 방법들이 시도되고 있다. 평면변형조건에서 펀치스트레칭 시험을 행하여 파단이 일 어날 때까지의 펀치 행정거리를 한계 돔 높이(limiting dome height)라 하여 선진 제국에서는 박판금속의 성형성에 대한 품질관리 수단으로서 이용하고 있다. 우리나라의 박판금속의 성형 업계에서도 새로운 공정의 개발에 있어서 성형한계도와 변형측정법을 이용하므로서 시행착오를 줄이고, 한계돔 높이에 의한 품질관리기법을 이용하므로서 불량율저감 및 생산성 향상을 기할 필요가 있다 하겠다. 각종 재료에 대하여 측정한 성형한계에 관한 자료는 그 대표적인 값(예를 들면, 평면변형에서의 성형한계 값)으로서 컴퓨터에 저장하여두면 성형성에 대한 CAE에 의한 분석시에 편리하게 이용될 수 있다.

  • PDF

Comparison of the flow estimation methods through GIUH rainfall-runoff model for flood warning system on Banseong stream (반성천 홍수경보 시스템을 위한 GIUH기반 한계홍수량 산정기법 비교연구)

  • Seong, Kiyoung;Ahn, Yujin;Lee, Taesam
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.347-354
    • /
    • 2021
  • In the past few years, various damages have occurred in the vicinity of rivers due to flooding. In order to alleviate such flood damage, structural and non-structural measures are being established, and one of the important non-structural measures is to establish a flood warning system. In general, in order to establish a flood warning system, the water level of the flood alarm reference point is set, the critical flow corresponding thereto is calculated, and the warning precipitation amount corresponding to the critical flow is calculated through the Geomorphological Instantaneous Unit Hydrograph (GIUH) rainfall-runoff model. In particular, when calculating the critical flow, various studies have calculated the critical flow through the Manning formula. To compare the adequacy of this, in this study, the critical flow was calculated through the HEC-RAS model and compared with the value obtained from Manning's equation. As a result of the comparison, it was confirmed that the critical flow calculated by the Manning equation adopted excessive alarm precipitation values and lead a very high flow compared to the existing design precipitation. In contrast, the critical flow of HEC-RAS presented an appropriate alarm precipitation value and was found to be appropriate to the annual average alarm standard. From the results of this study, it seems more appropriate to calculate the critical flow through HEC-RAS, rather than through the existing Manning equation, in a situation where various river projects have been conducted resulting that most of the rivers have been surveyed.

Prediction of Explosion Limits of Organic Halogenated Hydrocarbons by Using Heat of Combustions (연소열을 이용한 유기할로겐화탄화수소류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.63-69
    • /
    • 2012
  • Explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, the lower explosion limit (LEL) and upper explosion limit (UEL) of organic halogenated hydrocarbons were predicted by using the heat of combustion and chemical stoichiometric coefficients. The calculated explosion limits by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other organic halogenated hydrocarbons.

Prediction of Explosion Limits of Ethers by Using Heats of Combustion and Stoichiometric Coefficients (연소열과 화학양론계수를 이용한 에테르류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.44-50
    • /
    • 2011
  • Explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, the lower explosion limit(LEL) and upper explosion limit(UEL) of ethers were predicted by using the heat of combustion and stoichiometric coefficients. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other flammable ethers.

Estimation of Explosion Limits by Using Heats of Combustion for Esters (에스테르류의 연소열을 이용한 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.66-71
    • /
    • 2010
  • In order to evaluate the fire and explosion involved and to ensure the safe and optimized operation of chemical processes, it is necessary to know combustion properties. Explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, the lower explosion and upper explosion limits of esters were predicted by using the heat of combustion. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other ester flammable substances.

Prediction of Explosion Limits of Organic Acids Using Combustion Chemical Stoichiometric Coefficients and Heats of Combustion (연소열 및 화학양론계수를 이용한 유기산류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.47-51
    • /
    • 2013
  • The explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. The explosion limit of organic acids have been shown to be correlated the heat of combustion and the chemical stoichiometric coefficients. In this study, the lower explosion and upper explosion limits of organic acids were predicted by using the heat of combustion and chemical stoichiometric coefficients. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other organic acids.

Prediction of Explosion Limits of Aldehydes Using Chemical Stoichiometric Coefficients and Heats of Combustion (연소열 및 화학양론계수를 이용한 알데히드류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • The explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. The explosion limit of aldehydes have been shown to be correlated the heat of combustion and the chemical stoichiometric coefficients. In this study, the lower explosion and upper explosion limits of aldehydes were predicted by using the heat of combustion and chemical stoichiometric coefficients. The values calculated by the proposed equations agreed with literature data above determination coefficient 0.99. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the aldehydes.

An Algorithm for the Singly Linearly Constrained Concave Minimization Problem with Upper Convergent Bounded Variables (상한 융합 변수를 갖는 단선형제약 오목함수 최소화 문제의 해법)

  • Oh, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.213-219
    • /
    • 2016
  • This paper presents a branch-and-bound algorithm for solving the concave minimization problem with upper bounded variables whose single constraint is linear. The algorithm uses simplex as partition element. Because the convex envelope which most tightly underestimates the concave function on the simplex is uniquely determined by solving the related linear equations. Every branching process generates two subsimplices one lower dimensional than the candidate simplex by adding 0 and upper bound constraints. Subsequently the feasible points are partitioned into two sets. During the bounding process, the linear programming problems defined over subsimplices are minimized to calculate the lower bound and to update the incumbent. Consequently the simplices which do certainly not contain the global minimum are excluded from consideration. The major advantage of the algorithm is that the subproblems are defined on the one less dimensinal space. It means that the amount of work required for the subproblem decreases whenever the branching occurs. Our approach can be applied to solving the concave minimization problems under knapsack type constraints.