• Title/Summary/Keyword: 하천수리

Search Result 1,411, Processing Time 0.031 seconds

Estimation of Baseflow based on Master Recession Curves (MRCs) Considering Seasonality and Flow Condition (계절·유황특성을 고려한 주지하수감수곡선을 활용한 기저유출분리 평가)

  • Yang, Dongseok;Lee, Seoro;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-Sung
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Baseflow which is one of the unmeasurable components of streamflow and slowly flows through underground is important for water resource management. Despite various separation methods from researches preceded, it is difficult to find a significant separation method for baseflow separation. This study applied the MRC method and developed the improved approach to separate baseflow from total streamflow hydrograph. Previous researchers utilized the whole streamflow data of study period at once to derive synthetic MRCs causing unreliable results. This study has been proceeded with total nine areas with gauging stations. Each three areas are selected from 3 domestic major watersheds. Tool for drawing MRC had been used to draw MRCs of each area. First, synthetic MRC for whole period and two other MRCs were drawn following two different criteria. Two criteria were set by different conditions, one is flow condition and the other is seasonality. The whole streamflow was classified according to seasonality and flow conditions, and MRCs had been drawn with a specialized program. The MRCs for flow conditions had low R2 and similar trend to recession segments. On the other hand, the seasonal MRCs were eligible for the baseflow separation that properly reflects the seasonal variability of baseflow. Comparing two methods of assuming MRC for baseflow separation, seasonal MRC was more effective for relieving overestimating tendency of synthetic MRC. Flow condition MRCs had a large distribution of the flow and this means accurate MRC could not be found. Baseflow separation using seasonal MRC is showing more reliability than the other one, however if certain technique added up to the flow condition MRC method to stabilize distribution of the streamflow, the flow conditions method could secure reliability as much as seasonal MRC method.

Evaluation of Eutrophication and Control Alternatives in Sejong Weir using EFDC Model (EFDC 모델에 의한 세종보의 부영양화 및 제어대책 평가)

  • Yun, Yeojeong;Jang, Eunji;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.548-561
    • /
    • 2018
  • The objectives of this study were to construct a three-dimensional (3D) hydrodynamic and water quality model (EFDC) for the river reach between the Daecheong dam and the Sejong weir, which are directly affected by Gap and Miho streams located in the middle of the Geum River, and to evaluate the trophic status and water quality improvement effect according to the flow control and pollutant load reduction scenarios. The EFDC model was calibrated with the field data including waterlevel, temperature and water quality collected from September, 2012 to April, 2013. The model showed a good agreement with the field data and adequately replicated the spatial and temporal variations of water surface elevation, temperature and water quality. Especially, it was confirmed that spatial distributions of nutrients and algae biomass have wide variation of transverse direction. Also, from the analysis of algal growth limiting factor, it was found that phosphorous loadings from Gap and Miho streams to Sejong weir induce eutrophication and algal bloom. The scenario of pollutant load reduction from Gap and Miho streams showed a significant effect on the improvement of water quality; 4.7~18.2% for Chl-a, 5.4~21.9% for TP at Cheongwon-1 site, and 4.2~ 17.3% for Chl-a and 4.7~19.4% for TP at Yeongi site. In addition, the eutrophication index value, identifying the tropic status of the river, was improved. Meanwhile, flow control of Daecheong Dam and Sejong weir showed little effect on the improvement of water quality; 1.5~2.4% for Chl-a, 2.5~ 3.8% for TP at Cheongwon-1 site, and 1.2~2.1% for Chl-a and 0.9~1.5% for TP at Yeongi site. Therefore, improvement of the water quality in Gap and Miho streams is essential and a prerequirement to meet the target water quality level of the study area.

The Hydrochemistry of ChusanYongchulso Spring, Cheonbu-ri, Buk-myeon, Northern Ulleung Island (울릉도 북면 천부리 추산 용출소의 수질화학적 특성)

  • Lee, Byeong Dae;Cho, Byong Wook;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.565-582
    • /
    • 2018
  • We investigated the hydrochemical properties of ChusanYongchulso Spring located in Buk-myeon, Ulleung Island, focusing on the formation and characteristics of aquifers in and around the Nari caldera. Abundant pumice with high permeability and numerous fractures (including faults and joints) that formed as a result of caldera subsidence are widely distributed in the subsurface, favoring the formation of aquifers. Because of the presence of porous pyroclastic rocks with a high internal surface area, the water type of the springs is characterized by $NaHCO_3$, with upper stream waters and the upper spring being characterized by $NaHCO_3$ and NaCl, respectively. Components with a high coefficient of determination with EC are $HCO_3$, Na, F, Ca, Mg, Cl, $SiO_2$, and $SO_4$. The high concentrations of Na and Cl might be attributable to the main lithologies in the area, given that alkaline volcanic rocks are distributed extensively across Ulleung Island. Eh and pH, which are considered to be important indicators of water-rock interaction, are unrelated to most components. According to the results obtained from factor analysis, the variance explained by factor 1 is 54% and by factor 2 is 25.8%. Components with a high loading on factor 1 are F, Na, EC, Cl, $HCO_3$, $SO_4$, $SiO_2$, Ca, $NO_3$, and Mg, whereas components with a high loading on factor 2 are Mg and Ca, along with K, $NO_3$, and DO with negative loadings. It is suggested that the high concentrations of Na, Cl, F, and $SO_4$ are closely related to the presence of fine-grained alkaline pyroclastic rocks with high permeability and porosity, which favorintensewater-rock interaction. However, a wide-ranging investigation that encompasses methods such as geophysical prospecting and geochemical analysis (including isotope, trace-element, and tracer techniques) will be necessary to gain a better understanding of the groundwater chemistry, aquifer distribution, and water cycling of Ulleung Island.

Characteristics of Water Environment on Manun Reservoir (중산간 농업용 만운저수지의 수질환경특성)

  • Nam, Gui-Sook;Jang, Jeong-Ryeol;Lee, Gwang-Sik;Yoon, Keung-Sup;Lee, Sang-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Manun Reservoir, located in Andong district has the capacity of 2 million tons in irrigation water supply with the drainage area of $23.8\;km^2$. Manun Reservoir is over fifty year old, and shallow in depth. The ratio of drainage area (DA) to reservoir surface area (SA) as an effective physical parameter on water quality was 56.1 and was higher than those of other agricultural reservoirs. The ratio of reservoir storage (ST) to SA in Manun Reservoir was 4.79, and the mean depth was below 8m. Both ratios of DS/SA, total area (TA)/ST and ST/SA in Manun Reservoir were relatively higher than those in other agricultural reservoir and natural lakes in Korea. These physical parameters in Manun Reservoir, however, had a eutropic potential significance. Average of COD, IN, and TP in Manun Reservoir were 11.1 mg/L 1.426 mg/L, 0.093 mg/L, respectively. In the inflow stream of Manun Reservoir, the TN ($1.426{\sim}3.809\;mg/L$) was higher than those in reservoir. Only Lyngbya spp. was dominant in phytoplankton for this study period and Gymnodinium spp., Peridinium spp., and Cryptomonas spp. were dominant in zooplankton. According to the Carlson's trophic status index, Mnnun Reservoir was eutrophic in 1996, 1997, and 1999, and hypertrophic in 1998.

Seasonal Patterns of Reservoir Thermal Structure and Water Column Mixis and Their Modifications by Interflow Current (인공호에서 수온의 수직분포와 수층혼합의 계절적 변화 및 중층수 유입 현상의 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.9-19
    • /
    • 2001
  • contrasting monsoon between 1993 and 1994 produced an interannual difference in hydrology. Theoretical water residence time (TWRT) in monsoon 1993 averaged 27 d, which was>3 months shorter compared to the TWRT in monsoon 1994. A dominant physical process influencing thermal stratification, water movement, and mixing regime was an interflow current in 1993. During summer 1993, river water plunged to mid-lake (location 27 km) and passed through the 10${\sim}$20m stratum of the reservoir, resulting in an isolation of epilimnetic lake water from advected river water. The interflow disrupted thermal stratification and produced a meta-hypolimnetic warming of >4$^{\circ}C$ downlake, thereby increased a mixing depth (>13 m). In contrast, during monsoon 1994 density currents were not observed and strong thermal stratification occurred in the entire reservoir, resulting in > 2 fold greater thermal resistance (8.2${\times}10^{5}$ erg)compared to 1993 (4.0${\times}10^{5}$ erg). This reservoir was identified as a typical warm monomictic reservoir which showed one mixis during early winter. The timing of overturn, however, differed between the two years as a result of distinct contrast in TWRT and thermal regime; overturn in 1993 occured about one month earlier relative to that in 1994. Hypolimnetic warming was predictable in this system; the variation in discharge accounted (Y = 4.35-0.06X+0.10X$^{2}$, p<0.0001)for 98% of the interannual variation in hypolimnetic temperature. Overall data suggest that thermal stability, the timing of fall overturn, and water residence time in this system are primarily regulated by the intensity of monsoon.

  • PDF

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Effect of a Floating Photovoltaic System (FPV) at Chungju Dam (Cheongpung Lake) on Water Quality (충주댐(청풍호) 수상태양광 시설이 호수 수질에 미치는 영향)

  • Kim, Hak Jun;Kwak, Suhknam;Yoon, Min;Kim, Il-Kyu;Kim, Young-Sung;Kim, Dong-sub
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.293-305
    • /
    • 2019
  • In this study we investigated the effect of a floating photovoltaic (FPV) system in Cheongpung Lake on water quality. The FPV with a tilt angle of 33° covered ca. 0.04% of surface area (97 ㎢) of Chungju Lake. The water qualities of the whole lake before and after installation of FPV were first compared. DO, BOD, TOC, and Chl-a of the whole lake were increased, while conductivity decreased after installation period at the significance level of 0.05. This change was probably due to the increased influx of nutrients by 40% resulting from increased precipitation during the same period. We also measured water quality parameters on May and Nov. 2017 at the FPV center (FPVC) and nearby control sites, and compared water quality. The result showed that the FPVC and nearby sites were not significantly different (p>0.05), demonstrating that the FPV does not cause a decline of water quality. The water temperature, light intensity, and phytoplankton community were also measured. The water temperature was not different between the sites, while the light intensity decreased to 27~50%. Despite reduced light intensity at FPVC, the phytoplankton standing crops and the number of species were not significantly different (p>0.05). However, in the early November samples, standing crops was significantly higher in FPVC than control with periphytic diatoms belonging to Aulacoseira genus being dominant. This may be due to the temporal water body behavior or local retention of current by FPV system. This study may provide a measure of future installation of a FPV system.

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Cultivation to Forest in Jawoon-ri, Gangwon using the SATEEC ArcView GIS (SATEEC ArcView GIS를 이용한 홍천군 자운리 유역 임의 경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Kim, Ik-Jae;Mun, Yu-Ri;Jun, Man-Sig;Lim, Kyoung-Jae
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.73-95
    • /
    • 2009
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses(including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control(SATEEC) ArcView GIS was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it would be expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha(30.83%) and 103.64 ha(67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it would be expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.