• Title/Summary/Keyword: 하중-시간 이력

Search Result 194, Processing Time 0.027 seconds

Seismic Design and Analysis of Seismically Isolated KALIMER Reactor Structures (면진된 KALIMER 원자로 구조물의 내진설계 및 지진해석)

  • 이형연
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.75-92
    • /
    • 1999
  • In this paper, the seismic analysis model for seismically isolated KALIMER reactor structures is developed and the modal analysis and the seismic time history analysis are carried out for seismic isolation and non-isolation cases. To check the seismic stress limit according to the ASME Code, the equivalent seismic stress analyses are preformed using the 3-D finite element model. From the seismic stress analysis, the seismic margins are calculated for structural members. The limit of seismic load is defined to show that the maximum input acceleration ensures the structural safety for seismic load. In comparison of seismic responses between seismic isolation and non-isolation cases, the seismic isolation design gives significantly reduced acceleration responses and relative displacements between structures. The seismic margin of KALIMER reactor structure is high enough to produce the limit seismic load 0.8g.

  • PDF

Evaluation of Seismic Performance for Bridge Using Capacity Spectrum Method (역량스펙트럼을 이용한 교량의 내진성능평가)

  • Park, Yeon-Soo;Choi, Sun-Min;Kin, Eung-Rok;Suh, Byoung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.448-455
    • /
    • 2007
  • In 1992, the first design standard of quake proof bridge was established. However, most bridge structures which were constructed without considering earthquake in former times need performance of quakeproof property. Quakeproof analysis in current bridges, is based on analysis of load base which just has strength over the load of simple structures but is not checked through simple comparison of strength performance of structures so that we would like to check that ADRS method is reasonable or not using ADRS method(Accleration-Displacement Response Spectrum Method), a analysis method based on displacement of object of performance test. As the result of that, the capacity spectrum method can avoid complex dynamic analysis in analysis based on loads and it efficiently applies to design verification with normal checking for quakeproof performance and aimed performance of new structures. However we can not consider effects of high modes and it has problem that does not consider falling of performance in structures by repeated load.

  • PDF

Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper (점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.271-278
    • /
    • 2000
  • In this study the effect and applicability of viscoelastic dampers on the seismic reinforcement of steel framed structures are investigated in the context of the performance based design approach. The effect of the damper on dissipating the input seismic energy was investigated with a single degree of freedom system. For analysis models a five-story steel frame subjected to gravity load, a ten-story and twenty-story structure subjected to gravity and wind load were designed. The code-specified design spectrums were constructed for each soil type and performance objective, and artificial ground excitation records to be used in the nonlinear time history analysis were generated based on the design spectrums. Inter-story drift was adopted as the primary performance criterion. According to the analysis results, all model structures turned out to satisfy the performance level for most of the soil conditions except for the soft soil(operational level). It was also found that the seismic performance could be greatly enhanced, and the structures were led to behave elastically by installing viscoelastic dampers on appropriate locations.

  • PDF

Structural Analysis using Equivalent Models of Active Control Devices (능동형 제진장치의 등가모델을 이용한 구조해석)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.339-346
    • /
    • 2012
  • In this paper, equivalent models for active control devices are proposed so that building structures with such devices are analyzed using commercial structural analysis programs for the assessment of the structural members under active vibration control. Equivalent link models represent active control device with a virtual linear spring and dashpot, and equivalent force models are control force history acting at the installation point in structural models. Active controllers are designed based on the reduced-order models for a vertical cantilever model and a high-rise building model and corresponding equivalent models are determined from control gain matrices. Based on acceleration, displacement and member force responses, the effectiveness of the equivalent models is verified. As a result, proposed equivalent models, of which equivalent link model showed better performance, appear to enable detailed investigation of structural behavior to the extent of member force level.

Optimal design of nonlinear seismic isolation system by a multi-objective optimization technique integrated with a stochastic linearization method (추계학적 선형화 기법을 접목한 다목적 최적화기법에 의한 비선형 지진격리시스템의 최적설계)

  • Kwag, Shin-Young;Ok, Seung-Yong;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • This paper proposes an optimal design method for the nonlinear seismic isolated bridge. The probabilities of failure at the pier and the seismic isolator are considered as objective functions for optimal design, and a multi-objective optimization technique is employed to efficiently explore a set of multiple solutions optimizing mutually-conflicting objective functions at the same time. In addition, a stochastic linearization method is incorporated into the multi-objective optimization framework in order to effectively estimate the stochastic responses of the bridge without performing numerous nonlinear time history analyses during the optimization process. As a numerical example to demonstrate the efficiency of the proposed method, the Nam-Han river bridge is taken into account, and the proposed method and the existing life-cycle-cost based design method are both applied for the purpose of comparing their seismic performances. The comparative results demonstrate that the proposed method not only shows better seismic performance but also is more economical than the existing cost-based design method. The proposed method is also proven to guarantee improved performance under variations in seismic intensity, in bandwidth and in the predominant frequency of the seismic event.

Seismic Performance Evaluation of Special Moment Steel Frames with Torsional Irregularities - I Seismic Design (비틀림 비정형을 갖는 철골특수모멘트골조의 내진성능평가 - I 내진설계)

  • Han, Sang Whan;Kim, Tae O;Ha, Seong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.361-368
    • /
    • 2017
  • ASCE 7-10 defines the torsional irregular structure as the one that has large torsional responses caused by the eccentricity. The code requires that these structures should be designed abide by the torsional provisions. This study evaluates the influence of torsional provisions on the performance of the designed multiple steel moment frames with different eccentricity. In this study, 3D response history analyses are performed. The results show that the moment frame design according to the standard with torsional irregularity provisions showed larger performance as the eccentricity increased and the distribution of plastic hinges similarly to orthopedic structures.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

An Analytical Evaluation of Vibration Serviceability for Each Bridge Types with Same Span (동일한 지간을 가진 교량형식별 진동사용성의 해석적 평가 및 비교)

  • Park, Seong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.271-280
    • /
    • 2011
  • This study intends to analytically evaluate the vibration serviceability of the bridges for each long-span type having the same span length and road width using the Meister vibration sensation curve. With MIDAS, a structural analysis program, bridges were modeled using the girders as the frame element and slabs as the plate element. The transient analysis was performed using the moving loads of the design vehicles. This study presents the analytical process of reviewing the vibration serviceability during the design of long-span bridges. It involves the comparison of the vibration serviceability of different bridge types by applying the lagging-behind and acceleration amplitude from transient analysis to Meister curve. The result confirms that the process is appropriate.

A Case Study on Axial Forces of Cable-band Bolts in Domestic Suspension Bridge (국내 현수교량의 케이블 밴드볼트 축력관리 및 검토사례)

  • Park, Si-Hyun;Jung, Woo-Young;Kim, Hyun-Woo;You, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Suspension bridge cables made of high strength steel wires require periodical maintenance in accordance with the axial force of cable-band bolts, since the bolts in suspension bridges can undergo tension decrease due to creep of cable wires, bolt relaxation, load fluctuation, and cable re-arrangement, etc. Consequently, this study is aimed at investigating and subsequently evaluating the critical factors with respect to the bolt tension-decrease phenomenon in SR suspension bridge in Korea, based on field monitoring, theoretical studies, and field record management works. From the observation, it is interesting to note that the decrease in the bolt tension force is typically accompanied by plastic deformation of the zinc plating layers in the cable wires. In addition, a framework corresponding to generic methodologies to characterize the deformation in terms of the bolt tension-decrease and long-term history management has been developed in this exploratory study.

Lateral Load Distribution Factor for Pushover Analysis including Higher Mode Effects (고차모드 영향을 반영한 푸쉬오버 해석 횡력 분배계수)

  • Kim, Geon-Woo;Song, Jin-Gyu;Lee, Cheol-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2006
  • A procedure for determining the lateral load pattern for pushover analysis which includes higher mode effects is presented in this study. It is well-known that the details of future earthquakes at particular site is almost impossible to predict accurately and that the code-design spectra try to represent at least the average nature of probable future earthquakes. Thus the code-design spectrum is directly used as the input earthquakes in this paper when incorporating higher mode effects in the pushover analysis so that the efforts for selecting input motions and constructing response spectrum needed in some existing method could be avoided. A case study based on the time history analysis of a irregular steel moment frame showed that the procedure proposed in this study generally outperforms various pushover analysis procedures of ATC-40 and FEMA 273. However, the proposed procedure tended to be conservative as compared with the time history analysis method.