• Title/Summary/Keyword: 하중설계

Search Result 3,949, Processing Time 0.03 seconds

Prediction of primary lining loads for soft ground tunnels based on case studies (토사터널의 일차 라이닝에 작용하는 하중 예측 사례 연구)

  • Kim, Hak-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • Prediction of lining loads is one of the key issues to be addressed in the design of a tunnel. The validity of the existing design methods is reviewed by comparing the loads calculated using the methods with the field measurements obtained from several tunnels in Edmonton, carada. However, the existing methods are determined not to be fully satisfactory for the prediction of primary lining loads. To account for the stress reduction occurring prior to lining installation, the stress reduction factor is used coupled with an analytical solution for calculation of lining loads. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses and presented in a table. The loads calculated using the proposed method are compared with field measurements collected from tunnels in Edmonton to verify the method. The method can be used for other tunnels if the tunnels are built in stiff or dense soils, where good ground control is accomplished during the tunnel construction.

  • PDF

Analysis on the Seismic Load Reduction Effect of a Ground by Considering Pile Strength (말뚝 강성을 고려한 지반의 지진하중 저감 효과에 관한 해석 연구)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo;Kim, Dong-Soo;Lee, Sei-Hyun
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.451-456
    • /
    • 2012
  • In this study, a numerical analysis to evaluate the reduction of seismic load due to pile group was performed and compared the peak ground acceleration(PGA) measured at free-field and foundation. The special attention was given to the amplification of seismic acceleration on the foundation due to the pile effects. The analysis considering pile effects was carried out for 4, 8 and 12 piles with same condition by PLAXIS 2D Dynamics. Based on the analysis results, it is found that the overall reduction in seismic load due to foundation and reduction rates are similar irrespective of pile numbers. This study gives a possibility for effective design of piled foundation by reducing seismic load about 20~25%.

Horizontal Active Thrusts and Design of GRS-RW System for Distanced Surcharge (상재하중 이격거리를 고려한 GRS-RW 공법의 토압해석 및 설계)

  • 방윤경
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • This study presents an analytical method of estimating the developed horizontal active thrusts against GRS-RW( Geosynthetic Reinforced Soil Retaining Wall) system adapted to the case of distanced surcharge. In addition, the design charts that could be used for preliminary design of GRS-RW system are presented. The proposed method of analysis uses two body translation mechanism as well as force polygon concept. taking into account the effect of facing's rigidity. Besides. the effect of tension cracks in c-\Phi$ soils, seismic effects and horizontal distance from the back face of wall to uniformly distributed surcharge loadings are also included. The results of horizontal active thrusts obtained from the developed method of analysis are compared with those from Jarquio's modified Boussinesq equation.

  • PDF

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities (플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발)

  • Seung-Hoon Lee;Bo-Young Choi;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.

Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis (하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구)

  • Seokwoo Ham;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • The PIC design method is assigning different stacking sequences for each shell element through the preliminary FE analysis. In previous study, machine learning was applied to the PIC design method in order to assign the region efficiently, and the training data is labeled by dividing each region into tension, compression, and shear through the preliminary FE analysis results value. However, since buckling is not considered, when buckling occurs, it can't be divided into appropriate loading type. In the present study, it was proposed PIC-NTL (PIC design using novel technique for analyzing load type) which is method for applying a novel technique for analyzing load type considering buckling to the conventional PIC design. The stress triaxiality for each ply were analyzed for buckling analysis, and the representative loading type was designated through the determined loading type within decision area divided into two regions of the same size in the thickness direction of the elements. The input value of the training data and label consisted in coordination of element and representative loading type of each decision area, respectively. A machine learning model was trained through the training data, and the hyperparameters that affect the performance of the machine learning model were tuned to optimal values through Bayesian algorithm. Among the tuned machine learning models, the SVM model showed the highest performance. Most effective stacking sequence were mapped into PIC tube based on trained SVM model. FE analysis results show the design method proposed in this study has superior external loading resistance and energy absorption compared to previous study.

복합재료 선미익 항공기 날개 하중해석

  • Han, Chang-Hwan;Kim, Eung-Tai;Ahn, Seok-Min;Kim, Jin-Won
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.8-27
    • /
    • 2002
  • In this study, the load analysis of a composite canard aircraft is performed numerically. Excel visual basic program for PC is used to calculate aerodynamic coefficients, loads and moments etc.. The basic data required for the load analysis such as aircraft configuration and dimension, parts and its weight and coordinate etc. are obtained from Catia modeling, measurement or material density. Aircraft weight, center of gravity, inertia moment, structural design speeds, wing load distribution, forces and moments are evaluated by using these data. V-n diagram is also represented for selecting critical loads applied to the wing and fuselage. The V-n diagram is investigated to decide the flight envelope of canard aircraft for design speed VA, VC, VD and load factor +3.8G, -1.52G at maximum weight of 2,573 lbs and sea level. In the future, the results of the wing and fuselage load analysis is to represented by using selected critical loads.

  • PDF

Behavior of Tunnel Due to Adjacent Ground Excavation with Pre-loading on Braced Wall (근접 굴착시 흙막이벽 버팀대 선행하중 재하에 따른 터널의 거동)

  • Kim, Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.163-174
    • /
    • 2007
  • A New pre-loading system, through which a large pre-load could be charged was developed and applied to the braced wall in order to stabilize the adjacent tunnel. A pre-load larger than the designated axial force of bracing was imposed to prevent the horizontal displacement of the braced wall during the ground excavation. For this purpose, real scale model tests (1/10) were conducted, without and with pre-load on braced wall. And numerical analyses were performed for both the cases without and with pre-load, which were half (50%) and full (100%) respectively, and larger scale of the design axial farce of bracing. FEM program called PLAXIS was used for numerical analysis. As a result, it was found that the stability of the existing tunnel adjacent to the braced wall could be greatly enhanced when the horizontal displacement of braced wall was reduced by applying a pre-load, which was larger than the designated axial force of bracing.

Design of Cam Contour for Constant Hangers (등하중지지대의 캠 윤곽 설계)

  • Lee, Gun-Myung;Park, Mun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.669-675
    • /
    • 2011
  • A constant hanger is a device for supporting pipes in plants. It supplies a constant force to a supporting pipe even if the pipe moves because of thermal expansion. In this paper, we propose a method for designing the contour of a cam for a constant hanger. It has been shown that the contour of a cam must satisfy the geometrical relation of the cam, the force balance equation for the load tube, the relation between the side spring compression and the cam rotation angle, and the moment balance equation for the cam. A calculation procedure to solve these equations simultaneously is proposed, and a constant hanger is designed successfully.