• Title/Summary/Keyword: 하중감소

Search Result 1,580, Processing Time 0.027 seconds

플로팅 함체와 상호 거동에 따른 상부 골조의 모멘트 증대효과

  • Lee, Yeong-Uk;Park, Jeong-A;Choe, Ji-Hun;Chae, Ji-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.198-199
    • /
    • 2011
  • 플로팅 함체는 육상과 달리 지진하중의 영향을 받지 않으며 파랑하중의 영향을 크게 받는다. 파랑하중에 대한 안전성을 확보하기 위하여 범용구조해석 프로그램을 이용하여 해석하였다. 상부구조물의 영향을 확인하기 위하여 함체의 밀도를 변화시켜 상부하중에 대한 함체의 변위 응답을 확인을 한 결과, 밀도에 따른 함체 거동의 변화는 미미하였다. 해석을 통해 얻은 각 주기별 변위를 하중에 적용한 상부구조물의 모멘트 증가비는 파랑하중의 주기가 단주기에서 장주기로 갈수록 감소하는 양상을 보였으며, 축력은 파랑주기의 영향을 적게 받는 것으로 나타났다.

  • PDF

Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 1 : Flow control in Hovering Mode Using Synthetic Jet (Synthetic jet을 이용한 스마트 무인기(SUAV) 유동제어 Part 1 : 정지 비행 모드에서 synthetic jet을 이용한 유동제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1173-1183
    • /
    • 2009
  • In order to reduce the download around the Smart UAV(SUAV) at hovering, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. In order to control the leading edge and trailing edge separation, synthetic jet is located at 0.01c, $0.3c_{flap}$, $0.95c_{flap}$. As non-dimensional frequency, the flow pattern is altered and the rate of drag reduction is changed. The results show that synthetic jets shorten the vortex period and decrease the vortex size by changing local flow structure. By using leading edge jet and trailing edge jet, download is efficiently reduced compared to no control case at hovering mode.

Optimal Structural Design for the Electro-magnectic Launcher (전자력 발사기의 최적 구조 설계)

  • 이영신;안충호
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 1996
  • The optimal design for Electro-magnetic Launcher (EML : Rail Gun) considering structural and electrical constraints are presented. For the structure of EML under high pulsed currency, the cross section is minimized subject to maximum stress of each element(rail, side wall, ceramic, and steel) within allowable stress and preload limits. The electrical constraint is the effective ceramic thickness which prevents the eddy current effect reducing the performance of EML. The stress analysis and optimization procedure of 90mm EML is conducted with ANSYS Code. The optimal design under preload is reduced to 53% of area compared with optimal design without preload. In case of rail with arc angle .theta.=45.deg., the performance of EML is the best among the other rail arc angles. The optimal design for rail with arc angle .theta.=45.deg., results in the reduction of 9% of area and 10.4% of deformation compared with Fahrenthold's design. The optimal preload 59.8MPa is much lower than Fahrenthold's design(186MPa). The results show that the optimal design of EML meets the design requirements.

  • PDF

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

Optimization of Spacecraft Structure by Using Coupled Load Analysis (연성하중해석을 이용한 위성체 구조부재의 최적화)

  • Hwang, Do-Soon;Lee, Young-Sin;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.106-113
    • /
    • 2002
  • In spacecraft system, structure subsystem has the mission of supporting all the components safely under various space environmental conditions. The safety of spacecraft structure is finally verified from the coupled load analysis, which is a branch of load analysis which combines the launch vehicle and satellite. This study introduces the optimization algorithm to reduce the weight of spacecraft structure under launch environmental conditions directly. The acceleration responses are obtained by the introduction of coupled load analysis, which lead to check the failure of spacecraft structural members. The results show a 12% saving of structural weight and this saving is mainly driven by the thickness of honeycomb core, which strongly affects the natural frequencies of platforms and panels.

Structural Analysis of Cheju-style Plastic Greenhouse Model for Crop Growing Based on the Wind Load (풍하중을 고려한 제주형 작물재배용 비닐하우스모델의 구조해석)

  • 민창식;김용호;권기린
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • An elastic analysis under wind load was performed for the double layered plastic greenhouse model developed particularly for minimizing damages under typhoons at Cheju Citrus Research institute in Seagipo city. General EVA film was used for the inner covering and the developed special film which would break the wind pressure down was used for the outer covering. The wind tunnel test showed this special film reduced the wind speed up to 86 to 98% under well controlled situation. Based on the elastic analysis performed in the study, the behavior of the greenhouse was changed significantly due to the boundary conditions. Not like other researchers before we applied dead load of the concrete support to the ground pipe and fixed support boundary conditions at the 4 corner pipes. The analysis shows that the greenhouse was lifted and pulled the pipe out of the ground due to the sucking wind pressure. The behavior of the greenhouse was quite similar to that one real greenhouse failure. Therefore, not only we need to find the realistic boundary conditions for the supports, but also need to find how to rest the pipe supports on the ground without economic loss.

  • PDF

Estimation of Debris Flow Impact Forces on Mitigation Structures Using Small-Scale Modelling (모형축소실험을 이용한 토석류 방지시설 충격하중 평가)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Kim, Jin-Ho;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.191-205
    • /
    • 2017
  • We use small-scale modelling to estimate the impact ofrce of debris flows on erosion control dams (ECD) and ring nets. The results indicate that the viscoelastic debris flows produced impact forces of 4.14, 3.66, 1.66 kN from the bottom to the top of the ECD. Ring net tests produced a similar trend with generally smaller impact forces (2.28, 1.95, and 1.49 kN). Numerical analysis showed that the weight of the ECD (e.g., concrete retaining walls) provided resistance against the debris flow, whereas deformation of the ring net by elastic-elongation and aggregate penetration reduced the impact force by up to 45% compared with that of the ECD.

Effect of load on the wear and friction characteristics of a carbon fiber composites (탄소 섬유 복합재의 마찰 및 마모 특성에 미치는 하중 효과)

  • Koh, Sung-Wi;Yang, Byeong-Chun;Kim, Hyung-Jin;Kim, Jae-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.344-350
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite wear selected. When sliding took place against smooth and hard counterpart, the highest were resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

Analysis of Mechanical Loads During Yawing (풍력터빈 요 운동에 대한 기계적 하중 해석)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • The yaw control, a major part of the wind turbine, is closely related to the efficiency of electric power production and the mechanical load. The yaw error, which results from the nacelle not being appropriately aligned in the wind direction, not only decreases the power output but also reduces the lifetime of the wind turbine as a result of large fatigue loads. However, the yawing rate cannot be increased indefinitely because of constraints on mechanical loads. This paper investigates the characteristics of an active yaw control system, the basic principle of the system, and mechanical loads around the yaw axis during yawing.

Variation of Rock Properties in Acidic Solution and Loading Condition (산성수 침수 및 하중 조건에서의 암석물성변화 연구)

  • Chung, Jae Hong;Park, Seung Hun;Lee, Seung Jun;Yu, Seungwon;Lee, Woo Hee;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.154-165
    • /
    • 2016
  • This paper presents experimental results to investigate the affects of acidic solution under loading condition on rock properties. In the experiment, the variations of various rock properties including effective porosity, thermal conductivity, and etc were investigated with different pHs of solution and magnitudes of loading. The results show that the rock property change was increased with low pH under loading. It was predicted that chemical reaction rate would be increased in low pH. Below the crack initiation stress of the rock specimen, the variation of rock property change was reduced with increased loading. It could be explained with the reduced chemical reaction area by the compressional loading if there is no crack generation.