• Title/Summary/Keyword: 하중감소기법

Search Result 142, Processing Time 0.032 seconds

Further Improvement of Direct Solution-based FETI Algorithm (직접해법 기반의 FETI 알고리즘의 개선)

  • Kang, Seung-Hoon;Gong, DuHyun;Shin, SangJoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.249-257
    • /
    • 2022
  • This paper presents an improved computational framework for the direct-solution-based finite element tearing and interconnecting (FETI) algorithm. The FETI-local algorithm is further improved herein, and localized Lagrange multipliers are used to define the interface among its subdomains. Selective inverse entry computation, using a property of the Boolean matrix, is employed for the computation of the subdomain interface stiffness and load, in which the original FETI-local algorithm requires a full matrix inverse computation of a high computational cost. In the global interface computation step, the original serial computation is replaced by a parallel multi-frontal method. The performance of the improved FETI-local algorithm was evaluated using a numerical example with 64 million degrees of freedom (DOFs). The computational time was reduced by up to 97.8% compared to that of the original algorithm. In addition, further stable and improved scalability was obtained in terms of a speed-up indicator. Furthermore, a performance comparison was conducted to evaluate the differences between the proposed algorithm and commercial software ANSYS using a large-scale computation with 432 million DOFs. Although ANSYS is superior in terms of computational time, the proposed algorithm has an advantage in terms of the speed-up increase per processor increase.

Scour Impact on the Horizontal Bearing Capacity of Pier-Type Dolphin Structures (잔교식 돌핀 구조물의 수평 지지력에 세굴이 미치는 영향 검토)

  • Tae Young Jeong;Su Won Kang;Kyu Won Kim;Jong Hwa Won;Chan Joo Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.138-145
    • /
    • 2023
  • A study using numerical analysis techniques was conducted to examine the scour effect of pier-type dolphin structures installed in the domestic marine environment, and the effect of scour on horizontal bearing capacity was examined. In this study, we designed the berthing structures, taking into account the environmental and ground conditions of the target maritime area, and after calculating the predicted scour area, stability evaluation was performed by removing the ground elements of the area. The increase in scour depth was found to induce a direct decrease in horizontal bearing capacity due to soil loss in contact with the foundation, establishing a relationship that increases horizontal displacement. However, in the foundation designed to withstand the design load by reflecting the safety rate, the increase in horizontal displacement formed by possible scour is not large, which did not have a dominant effect on the horizontal bearing capacity of the foundation. In the future, research is required to analyze the impact of each factor and formalize evaluation and design techniques to evaluate the scour safety of marine foundations and pier-type structures installed in various ground conditions and structural formats.

Development and Verification of a Large Scale Resonant Column Testing System (대형 공진주시험기의 개발 및 검증)

  • Kim, Nam-Ryong;Ha, Ik-Soo;Shin, Dong-Hoon;Kim, Min-Seub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.295-304
    • /
    • 2012
  • In this study, a resonant column testing system which is the largest in Korea has been developed to evaluate the dynamic deformation characteristics of coarse granular geomaterials, and the performance and the applicability of the testing system have been verified. The system has been developed as a typical Stokoe type device whose boundary conditions are fixed bottom and free top with additional mass, and can adopt a large specimen with 200 mm in diameter and 400 mm in height. The driving and measurement instruments are configured as high performance and precision systems, hence the automated testing system is appropriate to drive enough stress and to measure the behavior precisely for the test in practical manner. The dynamic response of the mechanical components and the applicability of the system have been evaluated using metal specimens as well as polyurethane specimens, and its precision was verified by comparing its results with those from other equipment and/or methods. To confirm the applicability of the large system for coarse geomaterials, the resonant column test results from both large and normal scale apparatus for the same material were compared and it was found that the result can be partially affected by scale. Finally, the dynamic deformation characteristics of coarse geomaterial which is used for construction of large dam was evaluated using the large system and its practicality could be confirmed.

Pile Load Transition and Ground Behaviour due to Development of Tunnel Volume Loss under Grouped pile in Sand (사질토 지반에서 터널체적손실 증가에 따른 군말뚝의 하중변이와 지반거동)

  • Oh, Dong Wook;Lee, Yong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • A development of underground space is very useful solution to slove problem occurred from ground surface enlargement in urban areas due to the growth of population, tunnelling is the most popular way and widely used. Researches regarding tunneling-induced pile-soil interactive behaviour have been conducted by many researchers. A study on pile axial force distribution due to tunnelling through laboratory model test, however, is being rarely carried out. In this study, therefore, authors investigate ground behaviour due to tunnelling below grouped pile subjected vertical load as well as pile axial force distribution. A concept of volume loss is used to express tunnel excavation, which is normally applied to 1~2% for tunnelling in soft ground. In this study, however, 10% of that applied to investigate failure mechanism. As a result of laboratory model test, a decrease of pile axial force occurs at 1.5% of volume loss, settlement of grouped pile is 1.2~4.7 times greater than the adjacent ground surface one. Ground deformations at 1.5% of volume loss are measured using Close Range Photogrammetry and compared with results from numerical analysis.

Scour Monitoring for Offshore Foundation using Electrical Resistivity and Shear Wave Tomography (전기비저항과 전단파 토모그래피를 이용한 해상 기초구조물의 세굴도 평가)

  • Park, Kiwon;Lee, Jongsub;Choi, Changho;Byun, Yonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.37-45
    • /
    • 2014
  • An embedded length of monopile caused by a scouring should be evaluated to monitor the stability of offshore foundations, because offshore foundations are affected by horizontal load. The objective of this study is to evaluate the scouring around offshore foundation by using electrical resistivity and to estimate ground stiffness by using shear wave tomography. The electrical resistivity profiles and shear wave tomography were measured according to the scour depth of model ground prepared with sand and cement. Several electrodes and bender elements were used to measure the electrical resistivity and shear waves, respectively. The electrode sets are attached on the monopile surface and bender elements are arranged in $7{\times}7$ arrays by using nylone frames. The electrical resistivity profiles and shear wave tomography are acquired by laboratory experiment. Maximum scour depth was estimated by electrical resistivity profiles and the ground stiffness of model ground was estimated by shear wave tomography. This study suggests that the electrical resistivity profiles and shear wave tomography may be useful for monitoring the stability of the offshore foundations.

Assessment of the Damage in High Performance Fiber-Reinforced Cement Composite under Compressive Loading Using Acoustic Emission (AE기법에 의한 압축력을 받는 고인성 섬유보강 시멘트 복합체의 손상 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.589-597
    • /
    • 2009
  • High Performance Fiber-reinforced Cement Composite (HPFRCC) shows the multiple crack and damage tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For practical application, it is needed to investigate the fractural behavior of HPFRCC and understand the micro-mechanism of cement matrix with reinforcing fiber. This study is devoted to the investigation of the AE signals in HPFRCC under monotonic and cyclic uniaxial compressive loading, and total four series were tested. The major experimental parameters include the type and volume fraction of fiber (PE, PVA, SC), the hybrid type and loading pattern. The test results showed that the damage progress by compressive behavior of the HPFRCC is a characteristic for the hybrid fiber type and volume fraction. It is found from acoustic emission (AE) parameter value, that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cycle. Also, the AE Kaiser effect existed in HPFRCC specimens up to 80% of its ultimate strength. These observations suggested that the AE Kaiser effect has good potential to be used as a new tool to monitor the loading history of HPFRCC.

An Experimental Study on Behavior Characteristics of the Pretension Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 거동특성에 관한 실험적 고찰)

  • Choi, Young-Geun;Shin, Bang-Woong;Park, Si-Sam;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Application of the soil nailing method is continuously extending in maintaining stable excavations and slopes. However, ground anchor support system occasionally may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve local stability. In this study, a newly modified soil nailing technology named as the PSN (Pretension Soil Nailing) is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, laboratory model tests are carried out to investigate the failure mechanism and behavior characteristics of the PSN system. Various results of model tests are also analyzed to provide a fundamental basis for the efficient design.

The Stability Evaluation Methods of Embankment on Soft Clay (연약지반 성토의 안정평가 방법)

  • Kang, Yea Mook;Lee, Dal Won;Kim, Ji Hoon;Kim, Tae Woo;Lim, Seong Hun
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.260-270
    • /
    • 1998
  • The field tests were performed to suggest the rational method for stability evaluation of soft clay. The behavior of settlement-displacement obtained by field monitoring system was to compare and analyze the results of the observationed method, and to investigate the complex behavior of soft clay with filling height. The results of this study are summarized as follows. 1. The horizontal displacement was suddenly increased when physical properties of soft clay showed maximum values and the part of the turning point. The values of these properties were available to the fundamental data for stability evaluation. The shear deformation appeared that difference of the horizontal displacement was maximum values. 2. Although the stability of embankment by step filling showed the unstable part over the failure standard line, the embankment was confirmed stable. So the evaluation of the stability of embankment is reasonable to use the inclination of curve than failure standard line. 3. The horizontal displacement and relative settlement were increased as same ratio at improvement ground. Estimation of shear deformation using Terzaghi's modified bearing capacity should consider the relations of embankment load and undrained shear strength at nonimprovement ground, and minimum safety factor is recommended to use larger than 1.2. 4. Excess pore water pressure was increased with increasing of filling height and decreased with maintain the filling height. The embankment was unstable when filling height was exceed the evaluation standard line, and the behavior of excess pore water pressure and horizontal displacement could use as a standard of judgement of the filling velocity control because their behavior were agree with each other.

  • PDF

Reliability Analysis of Offshore Wind Turbines Considering Soil-Pile Interaction and Scouring Effect (지반과 말뚝의 상호작용 및 세굴현상을 고려한 해상풍력터빈의 신뢰성 해석)

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.222-231
    • /
    • 2016
  • Multi-member lattice-type structures including jackets and tripods are being considered as good alternatives to monopile foundations for relatively deep water of 25-50 m of water depth owing to their technical and economic feasibility. In this study, the reliability analysis of bottom-fixed offshore wind turbines with monopile and/or multi-member lattice-type foundations is carried out and the sensitivities of random variables such as material properties, external wind loadings and scouring depth are compared with respect to different types of foundations. Numerical analysis of the NREL 5 MW wind turbine supported by monopile, tripod and jacket substructures shows that the uncertainties of soil properties affect the reliability index more significantly for the monopile-supported OWTs while the reliability index is not so sensitive to the material properties in the cases of tripod- and jacket-supported OWTs. In conclusion, the reliability analysis can be preliminarily carried out without considering soil-pile-interaction in the cases of tripod- and jacket-supported OWTs while it is very important to use the well-measured soil properties for reliable design of monopile-supported OWTs.

A Study on the Topology Optimization of Nail Arrangement using Stiffened Shape Density (보강 형상밀도를 이용한 네일 배치의 위상최적화 연구)

  • Cho, Chung-Sik;Song, Young-Su;Lee, Su-Gon;Woo, Jae-Gyung;Choi, Woo-Il
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.605-618
    • /
    • 2018
  • Korea follows the slope design criteria during construction. It was enacted by the Ministry of Land, Transport and Maritime Affairs. There are cases where the Soil-nail is designed as a measure to secure slope stability. The arrangement of the soil-nail may be arranged at equal intervals or may be arranged differently depending on the soil failure model. The optimum design of the countermeasure method is determined by securing stability of the slope through optimization of dimensions and shape. However, when uniform nails are placed at low elevations in slopes, the standard safety factor is exceeded, which may hinder economic design. It is preferable to arrange the reinforcement of the nails over the entire slope. When the horizontal spacing of the nails was topology optimized according to the slope height, it was possible to minimize the amount of reinforcement while satisfying the standard safety factor. Since the active load is reduced in the section where the slope height is lowered, the safety factor after reinforcement may be excessively increased. Therefore, the phase optimization method is proposed as an economical optimal design method using the reinforcing shape density. In addition, a relational expression was designed to optimize the horizontal spacing by slope height.