대부분의 머신러닝 및 딥러닝 모델의 경우 하이퍼 파라미터 선택은 모델의 성능에 큰 영향을 미친다. 따라서 전문가들은 작업을 수행하기 위해 모델을 구축할 때 하이퍼 파라미터 튜닝을 수행하는 데 상당한 시간을 소비해야 한다. Hyperparameter Optimization(HPO)을 해결하기 위한 알고리즘은 많지만 대부분의 방법은 검색을 수행하기 위해 각 epoch에서 실제 실험 결과를 필요로 한다. 따라서 HPO 검색을 위한 시간과 계산 지원을 줄이기 위해 본 논문에서는 Multi-agent Proximal Policy Optimization(MAPPO) 강화 학습 알고리즘을 제안한다. 2개의 이미지 분류 데이터 세트에 대한 실험 결과는 우리의 모델이 속도와 정확성에서 다른 기존 방법보다 우수하다는 것을 보여준다.
최근 인공지능 기술의 발전과 함께 물리탐사의 다양한 분야에서도 인공지능의 핵심 기술인 머신러닝의 활용도가 증가하고 있다. 또한 머신러닝 및 딥러닝을 활용한 연구는 이미지, 비디오, 음성, 자연어 등 다양한 태스크의 추론 정확도를 높이기 위해 복잡한 알고리즘들이 개발되고 있고, 더 나아가 자료의 특성, 알고리즘 구조 및 하이퍼 파라미터의 최적화를 위한 자동 머신러닝(AutoML) 분야로 그 폭을 넓혀가고 있다. 본 연구에서는 AutoML 분야 중에서도 하이퍼 파라미터(hyperparameter) 자동 탐색을 위한 베이지안 최적화 기술에 중점을 두었으며, 본 기술을 물리탐사 분야에서도 암상 분류(facies classification) 문제에 적용했다. Vincent field의 현장 물리검층 및 탄성파 자료를 이용하여 암상 및 공극유체를 분류하는 지도학습 기반 모델에 적용하였고, 랜덤 탐색 기법의 결과와 비교하여 베이지안 최적화 기반 예측 프레임워크의 효율성을 검증하였다.
안정적으로 전력을 공급하고 전력계통을 운영하기 위해서는 최대전력을 정확히 예측해야 한다. 특히, 최대전력이 높게 발생하는 겨울과 여름에는 그 중요성이 매우 커진다. 최대전력을 실제 수요보다 높게 예측하면 발전소 기동 비용이 증가하여 경제적 손실이 발생하고, 최대전력을 실제 수요보다 낮게 예측하면 기동이 가능한 발전소가 부족하여 정전이 발생할 수 있다. 최대전력의 예측 오차를 최소화함으로써 경제적 손실과 정전을 예방할 수 있다. 본 논문에서는 최대전력 예측의 오차를 최소화하기 위하여 최신 딥러닝 모델인 TCN을 이용한다. 딥러닝 모델은 하이퍼 파라미터를 어떻게 설정하느냐에 따라 성능 차이가 발생하므로, TCN의 하이퍼 파라미터를 최적화하는 방법을 제안한다. 2006년부터 2021년까지의 데이터를 입력하여 모델을 훈련하고, 2022년의 데이터를 이용하여 예측 오차를 실험하였다. 실험을 수행한 결과 본 논문에서 제안한 최적화 방법을 이용한 TCN 모델의 성능이 다른 딥러닝 모델보다 성능이 우수한 것을 확인하였다.
최근 빅데이터 및 딥러닝 기술의 발전으로 다양한 교통정보가 널리 수집 및 활용되고 있다. 특히 시계열 특성을 갖는 교통정보 예측 분야에서는 장단기 메모리(long short term memory, LSTM)가 널리 사용되고 있다. LSTM에 입력되는 시계열 데이터의 추세, 계절성, 주기 등이 상이하기 때문에 시계열 데이터를 기반으로 한 예측 모델에서도 데이터의 특성에 따라 하이퍼 파라미터의 적합한 값을 찾는 시행착오법이 필수적이다. 이에 적합한 하이퍼 파라미터를 찾는 방법론이 정립된다면, 정확도가 높은 모델 구성에 소요되는 시간을 줄일 수 있다. 따라서, 본 연구에서는 국내 고속도로 차량검지기 데이터와 LSTM을 기반으로 교통정보 예측 모델을 개발하였으며, LSTM의 하이퍼 파라미터별 평가지표 변화를 통해 예측 결과에 미치는 영향평가를 수행하였다. 또한, 이를 기반으로 교통분야에서 고속도로 교통정보 예측에 적합한 하이퍼 파라미터를 찾는 방법론을 제시하였다.
본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.
본 논문은 순환 신경망 대신 합성곱 신경망을 사용하여 시계열 데이터 분류 성능을 분석한다. TSC(Time Series Community)에는 GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)와 같은 전통적인 시계열 데이터 이미지화 알고리즘들이 있다. 실험은 이미지화 알고리즘들에 필요한 하이퍼 파라미터들을 조정하면서 합성곱 신경망의 성능을 평가하는 방식으로 진행된다. UCR 아카이브의 GunPoint 데이터셋을 기준으로 성능을 평가했을 때, 본 논문에서 제안하는 STFT(Short Time Fourier Transform) 알고리즘이 최적화된 하이퍼 파라미터를 찾은 경우, 기존의 알고리즘들 대비 정확도가 높고, 동적으로 feature map 이미지의 크기도 조절가능하다는 장점이 있다. GAF 또한 98~99%의 높은 정확도를 보이지만, feature map 이미지의 크기를 동적으로 조절할 수 없어 크다는 단점이 존재한다.
본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.
본 연구의 목적은, U-net 딥러닝 모델을 이용하여 CT 영상에서의 노이즈 감소 효과를 다양한 하이퍼 파라미터를 적용하여 평가하였다. 노이즈가 포함된 입력 영상 생성을 위하여 Gaussian 노이즈를 적용하였고, 총 1300장의 CT 영상에서 train, validation, test 셋의 비율을 8:1:1로 유지하여 U-net 모델을 적용하여 학습하였다. 연구에서 적용된 하이퍼파라미터는 최적화 함수 Adagrad, Adam, AdamW와 학습횟수 10회, 50회, 100회와 학습률 0.01, 0.001, 0.0001을 적용하였으며, 최대 신호 대 잡음비와 영상의 변동계수 값을 계산하여 정량적으로 분석하였다. 결과적으로 U-net 딥러닝 모델을 적용한 노이즈 감소는 영상의 질을 향상시킬 수 있으며 노이즈 감소 측면에서 유용성을 입증하였다.
Image-to-image 변환에서 인상적인 성능을 보이는 StarGAN 은 모델의 성능에 중요한 영향을 끼치는 adversarial weight, classification weight, reconstruction weight 라는 세가지 하이퍼파라미터의 결정을 전제로 하고 있다. 본 연구에서는 이 중 conditional GAN loss 인 adversarial loss 와 classification loss 를 대치할 수 있는 attribute loss를 제안함으로써, adversarial weight와 classification weight 를 최적화하는 데 걸리는 시간을 attribute weight 의 최적화에 걸리는 시간으로 대체하여 하이퍼파라미터 탐색에 걸리는 시간을 획기적으로 줄일 수 있게 하였다. 제안하는 attribute loss 는 각 특징당 GAN 을 만들 때 각 GAN 의 loss 의 합으로, 이 GAN 들은 hidden layer 를 공유하기 때문에 연산량의 증가를 거의 가져오지 않는다. 또한 reconstruction loss 를 단순화시켜 연산량을 줄인 simplified content loss 를 제안한다. StarGAN 의 reconstruction loss 는 generator 를 2 번 통과하지만 simplified content loss 는 1 번만 통과하기 때문에 연산량이 줄어든다. 또한 이미지 Framing 을 통해 배경의 왜곡을 방지하고, 양방향 성장을 통해 학습 속도를 향상시킨 아키텍쳐를 제안한다.
주가 예측은 금융시장에서 중요하게 다뤄지고 있는 주제이지만 영향을 미칠 수 있는 다수의 요소들로 인해 어려운 주제로 고려되고 있다. 본 논문에서는 시계열 예측 모델 (LSTM, GRU)과 데이터의 시간적 의존성을 고려하지 않는 비 시계열 예측 모델 (RF, SVR, KNN, LGBM)을 주가 예측에 적용하여 성능을 비교하고 분석하였다. 또한 주가 데이터와 기술적 분석 보조지표, 재무제표 지표, 매수매도 지표, 공매도, 외국인 지표 등 다양한 데이터를 조합 및 활용하여 최적의 예측 요소를 찾아내고 업종별로 주가 예측에 영향을 미치는 주요 요소들을 분석했다. 하이퍼파라미터 최적화 과정을 통해 알고리즘별 예측 성능을 향상 시키는 과정도 진행하여 성능에 영향을 주는 요인을 분석하였다. 변수 선택과 하이퍼 파라미터 최적화 과정을 거친 결과, 시계열 예측 알고리즘인 GRU, 그리고 LSTM+GRU의 예측 정확도가 가장 높은 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.