• Title/Summary/Keyword: 하이브리드 최적화기법

Search Result 58, Processing Time 0.025 seconds

A Synchronized Scheme Applying on Hybrid in On-Line Game (온라인 게임에서의 하이브리드기법을 적용한 동기화 기법)

  • Kime, Hye-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • Because development of high speed network, spread of internet, and high quality of computer performance, request and internet about massive multiplayer playing the game, is increasing. In order to experience realistic game play which is one of the most importance factor in massive multiplayer on-line, synchronization is importance matter. We propose synchronized and optimized scheme that combined FSM (Finite State Machine) and event holding method for efficient state synchronization for massive multiplayer on-line, and we show the effectiveness and reliability of our proposed scheme through the implementing and testing of the game server applying on our proposed scheme.

Detection and Disgnosis of induction motor using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • 김승석;김형배;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.321-324
    • /
    • 2004
  • 본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

Design of X-band Broadband Twist Reflector Using Hybrid Particle Swarm Optimization (Hybrid Particle Swarm Optimization 기법을 적용한 X-대역 광대역 편파 변환기 설계)

  • Hwang, Keum-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.390-395
    • /
    • 2009
  • Design and optimization of a broadband meander-line twist reflector was performed for X-band application. Based on the equivalent transmission line model, the polarization twist performance was evaluated. Genetic analysis, particles swarm, and hybrid swarm optimizations were employed to obtain the optimized geometrical parameters. The optimized design exhibits low cross-polarization level below - 25 dB between 8.45 and 11.38 GHz. The polarization twist loss was below 0.2 dB. Comparison between computed and simulated results was also discussed.

Novel Mobile Satellite Communication Antenna Design Based on Shaped-Reflector (새로운 성형 반사판 기반의 이동 위성 통신 안테나 설계)

  • Jung, Young-Bae;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.826-831
    • /
    • 2008
  • This paper presents hybrid antenna(HA) design based on shaped reflector for mobile satellite communication. HA is composed of a shaped reflector and a feeder having $1{\times}8$ linear phased array, and reflector shaping method is applied for the performance optimization with minimum aperture size. And, in the feeder design, HA has another merit to minimize the manufacturing cost by optimizing the number of element. Proposed HA is designed at Ka-band and can electrically control a beam pattern within ${\pm}3^{\circ}$ in the basic angle of $+45^{\circ}$ in elevation. This antenna is designed to meet ITU-R S.465-5 for beam pattern including side-lobe level.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.

Optimization Power Management System for electric propulsion system (전기추진시스템용 OPMS 기법 연구)

  • Lee, Jong-Hak;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • The stability of the propulsion system is crucial for the autonomous vessel. Multiple power generation and propulsion systems should be provided for the stability of the propulsion system. High power generation capacity is calculated for stability, resulting in economical decline due to low load operation. To solve this problem, we need to optimize the power system. In this paper, an OPMS for electric propulsion ship is constructed. The OPMS consists of a hybrid power generation system, an energy storage system, and a control load system. The power generation system consists of a dual fuel engine, the energy storage system is a battery, and the control load system consists of the propulsion load, continuous load, intermittent load, cargo part load and deck machine load. The power system was constructed by modeling the characteristics of each system. For the experiment, a scenario based on ship operation was prepared and the stability and economical efficiency were compared with existing electric propulsion ships.

Thermal Residual Stresses in the Frequency Selective Surface Embedded Composite Structures and Design of Frequency Selective Surface (주파수 선택적 투과막이 결합된 복합재료의 잔류응력평가 및 선택적 투과막 설계)

  • Kim, Ka-Yeon;Chun, Heoung-Jae;Kang, Kyung-Tak;Lee, Kyung-Won;Hong, Ic-Pyo;Lee, Myoung-Keon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, Particle Swarm Optimization(PSO) is applied to the design of the Frequency Selective Surface(FSS) and residual stresses of hybrid radome is predicted. An equivalent circuit model with Square Loops arrays was derived and then PSO was applied for acquiring the optimized geometrical parameters with proper resonant frequency. Residual stresses occur in the FSS embedded composite structures after cocuring and have a great influence on the strength of the FSS embedded composite structures. They also effect transmission quality because of delamination. Therefore, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis with considering the effects of FSS pattern, and composite stacking sequence.

Reusable Network Model using a Modified Hybrid Genetic Algorithm in an Optimal Inventory Management Environment (최적 재고관리환경에서 개량형 하이브리드 유전알고리즘을 이용한 재사용 네트워크 모델)

  • Lee, JeongEun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.53-64
    • /
    • 2019
  • The term 're-use' here signifies the re-use of end-of-life products without changing their form after they have been thoroughly inspected and cleaned. In the re-use network model, the distributor determines the product order quantity on the network through which new products are received from the suppliers or products are supplied to the customers through re-use of the recovered products. In this paper, we propose a reusable network model for reusable products that considers the total logistics cost from the forward logistics to the reverse logistics. We also propose a reusable network model that considers the processing and disposal costs for reuse in an optimal inventory management environment. The authors employe Genetic Algorithm (GA), which is one of the optimization techniques, to verify the validity of the proposed model. And in order to investigate the effect of the parameters on the solution, the priority-based GA (priGA) under three different parameters and the modified Hybrid GA (mhGA), in which parameters are adjusted for each generation, were applied to four examples with varying sizes in the simulation.

Optimized Mix Proportioning of Steel and Hybrid Reinforced Concrete Using Harmony Search Algorithm (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.151-159
    • /
    • 2006
  • The guide line of the SFRC mix design was not established, and the convenience of the practical application on the spot is not so good. In this paper, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply to SFRC on the practical spot. This program could minimize the number of trial mixes and get an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. Additionally, new algorithm, in this paper, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players, Musical performances seek a best state determined by aesthetic estimation, as the optimization algorithms seek a best state determined by objected function value. And, it was developed the program about single fiber reinforced concrete, beside to the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next research about hybrid fiber reinforced concrete.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.