• Title/Summary/Keyword: 하이브리드 철도차량 차체

Search Result 10, Processing Time 0.045 seconds

A Study on the Fire Safety of a Hybrid Composite Train Carbody (하이브리드 복합재 철도차량 차체의 화재 안전성 평가연구)

  • Kim, Jung-Seok;Lee, Duk-Hee; Jung, Woo-Sun;Cho, Sea-Hyun
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • This paper explains fire safety tests of a hybrid composite train carbody with carbon/epoxy sandwich bodyshell and stainless steel underframe. In this study, a large scale mock-up was used to evaluate the fire safety of the composite train carbody. The test was conducted to the bare composite carbody mock-up without interior facilities and the fully equipped one. Tile fire propagation and temperature distribution of the carbon/epoxy bodyshell and the glass phenol interior panels was evaluated under the real fire accident scenario. The test scenario was based on the DaeGu subway fire accident. From the tests, both the surface temperature of the interiors and the composite bodyshell wore lower than tile ignition temperature. In addition, the fire spread along the surface of the interiors and bodyshell was not occurred.

A Study for Life Cycle Assessment(LCA) of Hybrid TTX carbody with Composites (하이브리드 복합재 차체 틸팅차량에 대한 전주기 평가(LCA) 연구)

  • Lee Sang-Jin;Jeong Jong-Cheol;Cho Se-Hyun;Kim Jung-Suk;Seo Soung-il
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1103-1108
    • /
    • 2005
  • 본 연구는 한국형 틸팅 차량의 복합재 적용 차체에 대한 비용 모델링과 전주기 평가(LCA)를 수행하였다. 원자재 생산에서 차체 제작, 수명이 끝나는 시점까지의 사용에 대한 모든 단계에서의 비용을 분석했다. 5년 동안 년간 90대의 생산량에 대한 금속 차체, 2종의 복합재 차체에 대해 비교하였다. 2종의 복합재 차체는 하이브리드 스틸-복합재 구조와 전체 복합재 차체를 나타낸다. 또한, 이 두 경우 모두에 대해 오토클레이브, 진공 성형, 레진 인퓨젼 공법의 성형에 대해 분석하였다. 제작시의 모든 성형 공법에 대해 하이브리드 차체는 전체 복합재 차체 보다 $4\~6\%$ 비용이 낮았다. 전체 복합재 차체의 경우, 레진 인퓨젼의 경우가 오토클레이브에 대해서는 $11\%$ 낮은 가장 낮은 제작 비용이 소요되었다. 비용-전주기 분석을 통해 전체 복합재 차체는 가장 높은 제작비용이 소요되고 사회 경제학적 측면에서 전체 전주기 비용과 환경영향은 단순 차량 구입 비용보다 더 중요한 변수이며 전체 복합재 차체가 분명한 최적의 해답 임을 확인하였다.

  • PDF

An Experimental Study on the Hybrid Composite Carbody Structure (하이브리드 복합재 철도차량 차체에 대한 시험적 연구)

  • Kim Jung-Seok;Jeong Jong-Cheol;Lee Sang-Jin
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.19-25
    • /
    • 2005
  • This paper has performed an experimental study on the hybrid composite carbody of Korean tilting railway vehicle. The hybrid composite carbody has the length of 23m and is comprised of a 40mm-thick aluminium honeycomb core and 2mm-thick woven fabric carbon/epoxy face sheet. In order to evaluate the structural behavior and safety of the hybrid composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. The test was performed under Japanese Industrial Standard (JIS) 17105 standard. from the tests, the maximum deflection was 12.3mm and the equivalent bending stiffness of the carbody was $0.81\times10^{14}\;kgf{\cdot}mm^2$. The maximum strain of the composite body was below $20\%$ of failure strain of the carbon/epoxy face sheet.

A Study on the Low Velocity Impact Response of Woven Fabric Composites for the Hybrid Composite Train Bodyshell (하이브리드 복합재 철도차량 차체 적용 적층판의 저속충격특성 연구)

  • Lee Jae-Hean;Cheong Seong-Kyun;Kim Jung-Seok
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2005
  • This paper presents a study on the low velocity impact response of the woven fabric laminates for the hybrid composite bodyshell of a tilting railway vehicle. In this study, the low velocity impact tests for the three laminates with size of $100mm\times100mm$ were conducted at three impact energy levels of 2.4J, 2.7J and 4.2J. Based on the tests, the impact force, the absorbed energy and the damaged area were investigated according to the different energy levels and the stacking sequences. The damage area was evaluated by the visual inspection and the C-scan device. The test results show that the absorbed energy of [fill]8 laminate is highest whereas (fill2/warp2)s is lowest. The [fill]8 laminate has the largest damage area because of the highest impact energy absorption.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.

A Study on the Economic Feasibility of Hybrid Bodyshell Made of Sandwich Composite Plate (샌드위치형 복합재 하이브리드 차체의 경제성 분석에 관한 연구)

  • Seo, Sung-Il;Kim, Jung-Seok;Cho, Se-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.97-103
    • /
    • 2012
  • Composite honeycomb sandwich plate is light and strong. It is easy to produce. It began to be applied to the bodyshell of rolling stock. Generally, weight saving amounts to 27%. However, the material cost of it is much higher than that of aluminum extrusion profile, which prevents popular use of it for bodyshell. In this paper, manufacturing processes of two light materials were compared to investigate cost impact. After cost breakdown was defined, economics of two materials was analyzed using the previous cost data. Easy production of composite bodyshell could compensate for higher material cost. Mass production of composite bodyshell can make the equipment cost lower for the composite bodyshell so that it may have strong competitiveness to the aluminum bodyshell. Operational energy saving due to weight reduction was also presented referring to the actual statistical data in a metro line.

A Study on the Lightweight Design of Hybrid Modular Carbody Structures Made of Sandwich Composites and Aluminum Extrusions Using Optimum Analysis Method (최적화 해석기법을 이용한 샌드위치 복합재와 알루미늄 압출재 하이브리드 모듈화 차체구조물의 경량 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1335-1343
    • /
    • 2012
  • In this study, the lightweight modular design of hybrid railway carbody structures made of sandwich composites and aluminum extrusions was investigated by using topology and size optimization techniques. The topology optimum design was used to select the best material for parts of the carbody structure at the initial design stage, and then, the size optimum design was used to find the optimal design parameters of hybrid carbody structures using first-order and sub-problem methods. Through the topology optimization analysis, it was found that aluminum extrusions were suitable for primary members such as the underframe and lower side panel module to improve the stiffness and manufacturability of the carbody structures, and sandwich composites were appropriate for secondary members such as the roof and middle side panel module to minimize its weight. Furthermore, the results obtained by size optimization analysis showed that the weight of hybrid carbody structures composed of aluminum extrusions and sandwich composites could be reduced by a maximum of approximately 17.7% in comparison with carbody structures made of only sandwich composites.

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.