• Title/Summary/Keyword: 하이브리드 소음기

Search Result 46, Processing Time 0.021 seconds

Active Vibration Control Using Piezostack Based Mount (압전작동기 마운트를 이용한 능동진동제어)

  • Nguyen, Vien-Quoc;Choi, Sang-Min;Paeng, Yong-Seok;Han, Young-Min;Choi, Seung-Bok;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.386-392
    • /
    • 2008
  • This paper presents active vibration control performance of a hybrid mount. The proposed hybrid mount is devised by adopting both piezostack as an active actuator and rubber as a passive element. After experimentally identifying actuating force characteristics of the piezostack and dynamic characteristics of the rubber, the hybrid mount was designed and manufactured. Subsequently, a vibration control system with a specific mass loading is constructed, and its governing equations of motion are derived. In order to actively attenuate vibration transmitted from the base, a feedforward controller is formulated and experimentally realized. Vibration control responses are then evaluated in time and frequency domains.

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.617-623
    • /
    • 2007
  • This paper presents an active vibration control of a dynamic system using hybrid mount which consists of elastic rubber-piezostack actuator and elastic rubber-electromagnetic actuator, respectively. After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the dynamic system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the dynamic system are experimentally evaluated and presented in time and frequency domains.

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1131-1136
    • /
    • 2007
  • This paper presents an active vibration control of a 1-DOF system using hybrid mount which consists of elastic rubber and PZT(piezostack) actuator and elastic rubber and electromagnetic actuator, respectively After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the 1-DOF system are experimentally evaluated and presented in time and frequency domains.

  • PDF

Design of Hybrid Mount Using Rubber and Electromagnetic Actuator with Application to Vibration Control (전자기 작동기와 고무를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Paeng, Yong-Seok;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.915-918
    • /
    • 2006
  • This paper presents an active vibration control of a 1-DOF system using a hybrid mount which consists of elastic rubber and electromagnetic actuator. After identifying stiffness, damping properties of the elastic rubber and electromagnetic element, a mechanical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system control responses such as acceleration and transmitted force of the 1 -DOF system are presented in time domain.

  • PDF

Vibration Control of Intelligent Structures via ER Fluids and Piezoelectric Film Actuators (전기유동유체와 압전필름 액튜에이터를 이용한 지능구조물의 진동제어)

  • 박용군;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.249-253
    • /
    • 1995
  • 본 연구에서는 잠재적 응용성이 큰 ER유체와 압전필름을 액튜에이터로 하는 하이브리드형 지능구조물을 제안한 후 능동 진동제어를 실시하였다. 먼저 중공(hollow)의 샌드위치 형태 복합재료(glass/epoxy)보에 ER유체와 압전필름을 각각 삽입과 접착을 하여 하이브리드형 지능구조물을 제작하였다. 그리고 각 매체의 액튜에이팅 특성을 고려하여, ER유체 액튜에이터(ERFA)는 전장부하 함수로 도출되는 구조물의 주파수응답을 특징으로 하였고, 압전필름 액튜에이터(PFA)는 신경 슬라이딩 모드 제어기 (neuro sliding mode controller : NSC)를 적용하였다. 이 두 액튜에이터가 동시에 작동하는 능동 진동제어계를 실험적으로 구현한 후 과도응답과 강제 응답에 대한 진동제어 성능을 단일 액튜에이터 작동시와 비교 고찰하여 제시된 하이브리드 액튜에이팅의 효과를 입증하였다.

  • PDF

Performance Evaluation on an Active Hybrid Mount System for Naval Ships Using Piezostack Actuator (압전작동기를 이용한 함정용 능동 하이브리드 마운트 시스템의 진동제어 성능평가)

  • Quoc, Nguyen Vien;Choi, Seung-Boh;Oh, Jong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.77-82
    • /
    • 2010
  • In this work, a new active hybrid mount featuring piezostack actuator and rubber element is proposed, and its vibration control performance is evaluated by applying a robust frequency-shaped sliding mode controller. After describing the configuration of the proposed mount, vibration control performances are experimentally evaluated. A mount system with four active hybrid mounts is then constructed. To attenuate vibrations on the supported mass, a frequency-shaped sliding mode controller is designed and implemented to the system. Finally, control performances are obtained and presented in time and frequency domains via computer simulation.

  • PDF

Performance Comparison of Semi-active Control Algorithms for a Large-scale MR Damper using Real-time Hybrid Test Method (실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 준능동 제어알고리즘 성능 비교)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Choi, Kang-Min;Moon, Suk-Jun;Jung, Hyung-Jo;Chung, Hee-San;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.648-654
    • /
    • 2007
  • This paper presents the result of a comparison study to evaluate the performance of several semi-active control algorithms for use with large-scale MR damper applied to a building structure under seismic excitation using real-time hybrid test method. Recently, a variety of semi-active control algorithm studies are developed and generally evaluated the performance by using numerical analysis. In this paper real-time hybrid test method was applied to performance evaluating of semi-active control algorithms including a clipped optimal algorithm and the modulated homogeneous friction algorithm.

  • PDF

Performance Evaluation on an Active Hybrid Mount System for Naval Ships Using Piezostack Actuator (압전작동기를 이용한 함정용 능동 하이브리드 마운트 시스템의 진동제어 성능 평가)

  • Quoc, Nguyen Vien;Choi, Seung-Boh;Oh, Jong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • In this work, a new active hybrid mount featuring piezostack actuator and rubber element is proposed, and its vibration control performance is evaluated by applying a robust frequency-shaped sliding mode controller. After describing the configuration of the proposed mount, vibration control performances are experimentally evaluated. A mount system with four active hybrid mounts is then constructed. To attenuate vibrations on the supported mass, a frequency-shaped sliding mode controller is designed and implemented to the system. Finally, control performances are obtained and presented in time and frequency domains via computer simulation.