• Title/Summary/Keyword: 하이브리드 관리 모델

Search Result 53, Processing Time 0.036 seconds

A hybrid hydrological modeling framework combining physically-based and deep-learning-based hydrologic models: an approach considering dam operation (물리 기반 수문모형과 딥러닝 기반 모형을 결합한 하이브리드 수문 모델링 프레임워크: 댐 운영을 고려한 접근)

  • Yongchan Kim;Dongkyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.66-66
    • /
    • 2023
  • 대규모 댐의 운영으로 인한 인위적인 유량 교란은 물리 기반 수문모형의 정확한 하천유량 모의를 어렵게 만든다. 이러한 한계를 극복하기 위해, 상류의 자연형 유역 모의를 위한 물리 기반 수문모형 Variable Infiltration Capacity model과 댐 운영 모의를 위한 딥러닝 기반 모델을 결합한 하이브리드 모델링 프레임워크를 개발하였다. 본 연구는 수도권의 주요 상수원이자 대규모 댐들이 존재하는 팔당댐 유역을 대상으로, 물리 기반 수문모형만을 기반으로 구축한 단일 및 계단식 구조의 모델과 하이브리드 모델의 예측 성능을 비교하였다. 2015년부터 2019년까지의 검증 기간 동안, 하이브리드 모델, 단일 및 계단식 구조 모델의 Nash-Sutcliffe Efficiency는 각각 0.6410, -0.1054 그리고 0.2564로 하이브리드 모델의 성능이 가장 높은 것으로 나타났다. 이는 머신러닝 알고리즘을 이용한 댐 운영 고려가 정확한 하천유량 평가를 위해서 필수적임을 시사한다. 이러한 결과는 수자원 관리, 홍수 예측 등 다양한 분야에서 활용될 수 있으며, 특히 미래의 지속 가능한 물 관리를 위해 실무자에게 정확한 자료를 제공하는 데 기여할 수 있다.

  • PDF

Principles of Design for Hybrid Information Service Model (하이브리드 정보서비스 모델의 설계원칙)

  • 노진구
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.3
    • /
    • pp.87-114
    • /
    • 2001
  • A hybrid information environment can be described as one where an appropriate range of heterogeneous information services is presented to the user in a consistent and integrated way via a single interface. The purpose of this study is to suggest a need of hybrid information services through understanding of the hybrid information environment and hybrid library. Additionally, this study deal with basic concepts of design for a hybrid information service model and address a number of hybrid library projects based on these concepts, such as Agora, BUILDER, HealdLine, HyLife, and MALIBU. Finally, this study survey generic a model of hybrid library and suggest basic principles for building of hybrid information service model, such as integration, seamlessness, authentication, interconnectivity, and personalization of information seeking process environment.

  • PDF

Automatic Text Categorization Using Hybrid Multiple Model Schemes (하이브리드 다중모델 학습기법을 이용한 자동 문서 분류)

  • 명순희;김인철
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.35-51
    • /
    • 2002
  • Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.

Development and evaluation of watershed hybrid model using machine learning (머신러닝을 활용한 유역단위 하이브리드모델 개발 및 평가)

  • Sang Joon Bak;Gwan Jae Lee;Seo Ro Lee;Yeon Ji Jeong;Dong Hyuk Kum;Ji Chul Ryu;Woon JI Park;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.212-212
    • /
    • 2023
  • 비점오염원관리와 같이 장기적인 유역 관리 계획에서 유역 내 오염원 평가는 정말 중요하다. 유역 내 오염원 평가는 강우 유출에 의한 비점오염 발생원이 어디서 얼마나 발생시키는지에 대한 정량적인 조사가 필요하다. 유역 내의 오염원에 대한 정량적인 조사는 많은 비용과 시간이 필요하다. 이러한 비용과 시간을 줄이기 위해 유역단위 수리 수문 모델을 사용하고 있다. 유역단위 수리수문 모델은 HSPF (Hydrological Simulation Program in Fortran), SWAT (Soil and Water Assessment Tool), L-THIA ACN-WQ(The Long-term Hydrologic Impact Assessment Model with Asymptotic Curve Number Regression Equation and Water Quality model)등 다양한 모델이 사용되고 있다. 하지만 유역 모델을 통한 모의는 다양한 연산 과정을 진행하여 모의까지 많은 시간이 필요하다는 단점이 있다. 이에 따라 데이터 기반 모델링 기법(머신러닝/딥러닝)을 이용한 유출 및 수질 예측 연구가 많이 이루어지고 있다. 단순 머신러닝/딥러닝 기반 모델링 기법은 점(최종유출구)에서의 예측만 가능하여 최적관리 기법 적용 등과 같은 유역관리 방안을 적용하기 힘들다는 문제점이 있다. 따라서 본 연구에서 머신러닝/딥러닝을 통해 일부 수문 프로세스를 대체하고 소유역별 하도추적 기법을 연계하여 유량 및 수질 항목들의 모의가 가능한 하이브리드 모델을 개발하였다. 이는 머신러닝/딥러닝이 유역 모델의 일부 연산 과정을 대체하여 모의시간이 빠르며, 기존 머신러닝/딥러닝 예측 모델에서 평가가 어려웠던 유역 관리 방안 및 최적관리기법 적용 평가에도 활용이 가능할 것으로 판단이 된다.

  • PDF

Data Modeling in Grid-Based Hybrid Civil-Engineering Experiment (그리드 기반의 하이브리드 토목 공학 실험에서의 데이터 모델링)

  • Kim, Dong-Wook;Lee, Jang-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.104-109
    • /
    • 2007
  • 최근 분산된 자원을 효과적으로 공유할 수 있는 그리드 기반의 과학 연구가 다양하게 진행되고 있으며, 그러한 예로 국내에서는 건설 및 토목 분야의 원격실험 관측과 제어를 포함한 공동연구 환경의 구축을 내용으로 하는 KOCED(Korea Construction Engineering Development) 프로젝트가 진행 중에 있다. 본 논문에서는 KOCED에서 구축 중인 실험센터의 하나로써, 지리적으로 떨어진 실험 시설과 수치시뮬레이션을 연동하여 실험할 수 있는 하이브리드 실험센터를 대상으로 데이터 모델링을 하였다. 데이터 모델은 데이터를 표현하는 용어를 통일하고 데이터 간의 관계를 명확하게 하여, 데이터의 재사용성을 높일 수 있기 때문에 실험비용이 많이 소모되는 과학실험에 필수적이다. 그리드에 기반한 하이브리드 실험의 데이터 모델링은, 기존의 건설 및 토목실험의 대부분이 독립적인 실험 형태였기 때문에, 정확한 데이터 모델을 예측하기가 용이하지 않았다. 따라서 먼저 하이브리드 실험의 축소 모형인, 프로토타입 실험체를 만들고, 이에 대한 데이터 모델을 설계하여 토목공학 연구자에 의해 사용하게 하였다. 일정기간 사용기간을 갖고, 이에 대한 회의를 통해 향후 구축될 하이브리드 실험센터의 데이터 모델을 설계하였다. 현재 하이브리드 실험의 데이터 모델을 그리드 포탈 기반의 데이터관리 서비스로 구현 중에 있다.

  • PDF

Key Encapsulation Mechanism

  • 박제홍;권대성
    • Review of KIISC
    • /
    • v.14 no.5
    • /
    • pp.44-49
    • /
    • 2004
  • 비밀키 암호의 키 관리 문제를 해결하기 위해 제안된 공개키 암호는 효율성이나 제한된 메시지 영역으로 인해, 실제로는 메시지의 암호화에는 비밀키 암호를 사용하고 이때 사용되는 키를 메시지를 보낼 상대방과 안전하게 공유하기 위한 용도로 공개키 암호를 사용하는 하이브리드 형태가 일반적으로 사용된다. 최근 Shoup에 의해 제안된 Key Encapsulation Mechanism (KEM)은 이러한 공개키 암호의 실제 사용 용도를 감안하여 제안된 모델로 Data Encapsulation Mechanism (DEM)과 함께 안전한 하이브리드 공개키 암호를 설계하는 하나의 이론적인 모델을 제시하며, 이를 이용하여 만들어진 하이브리드 암호는 최근의 공개키 암호 표준화 작업에서 하나의 주류로 받아들여지고 있다. 본 논문에서는 최근 공개키 암호의 새로운 적용 방식으로 주목받고 있는 KEM과 함께, 이와 관련된 공개키 암호 표준화 작업에 대해서 구체적으로 알아본다.

Dam Inflow Prediction and Evaluation Using Hybrid Auto-sklearn Ensemble Model (하이브리드 Auto-sklearn 앙상블 모델을 이용한 댐 유입량 예측 및 평가)

  • Lee, Seoro;Bae, Joo Hyun;Lee, Gwanjae;Yang, Dongseok;Hong, Jiyeong;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.307-307
    • /
    • 2022
  • 최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.

  • PDF

Logical architecture for hybrid library design (하이브리드 도서관 설계를 위한 논리적 구조)

  • 김지훈;노진구
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.2
    • /
    • pp.69-92
    • /
    • 2002
  • A hybrid information service may include local and/or remote distributed services, both and electronic. Also, a hybrid information service can be described as one which an appropriate range of heterogeneous information services is presented to the user in a consistent and integrated way via a single interface. The purpose of this study is to suggest high-level requirements and logical architecture to design hybrid library. High-level requirements analysis for hybrid library need to contain baseline requirements, basic system requirements, searching, location, requesting, delivery and payment. A logical architecture need to consider logical architecture for hybrid library management system including user access points, hybrid library management system and hybrid library components and 5 layered architecture including presenter, coordinator, mediator, communicator and provider to achieve local simplicity while still supporting complex functionality of hybrid library.

A Hybrid Prediction Model for Self-Healing in Ubiquitous Environment (유비쿼터스 환경에서 자가 치유를 지원하는 하이브리드 예측 모델)

  • Yoo Gil-Jong;Park Jeong-Min;Lee Eun-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.319-322
    • /
    • 2006
  • 오늘날 분산 컴퓨팅 환경에서 운용되는 시스템이 증가됨에 따라 시스템의 관리작업은 고수준의 자동화를 요구하고 있다. 이에 따라 시스템 관리방식은 전통적인 관리자 중심에서 시스템 스스로가 자신의 문제를 인식하고 상황을 분석하여 해결하는 자율 컴퓨팅 방식으로 변화하고 있으며, 현재 이에 대한 연구가 많은 연구기관에서 다양한 방법으로 이루어 지고 있다. 그러나 이러한 대부분의 연구에서 자율 컴퓨팅의 한 요소인 자가 치유는 문제가 발생한 이후의 치유에 주로 초점이 맞추어져 있다. 이러한 문제를 해결하기 위해서는 시스템 스스로가 동작환경을 인식하고 에러의 발생을 예측하기 위한 예측 모델을 필요로 하게 된다. 따라서, 본 논문에서는 자율 컴퓨팅환경에서 자가 치유를 지원하는 4 가지 예측 모델 설계 방법을 제안하며, 본 예측 모델을 ID3 알고리즘, 퍼지추론, 퍼지뉴럴네트워크 그리고 베이지안 네트워크가 각 시스템 상황에 맞추어 적절하게 사용되는 하이브리드 방식이며, 이를 통해 보다 정확하고, 신속한 에러 예측이 가능해진다. 우리는 제안 모델을 평가하기 위해 본 예측 모델을 자가 치유 시스템에 적용하여 기존 연구와 예측 효율을 비교하였으며, 그 결과를 통해 제안 모델의 유효성을 증명하였다.

  • PDF

A Hybrid QoS Management Model for Distributed Multimedia Services in Ubiquitous Computing (유비쿼터스 컴퓨팅에서 분산 멀티미디어 서비스를 위한 하이브리드 QoS 관리 모델)

  • Jeong, Chang-Won;Lee, Geon-Yeob;Joo, Su-Chong
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.101-110
    • /
    • 2008
  • Ubiquitous computing has extended the computer system into the whole physical space and has ushered the emergence of more dynamic distributed systems. This environment require unique QoS parameters for various devices, resources and user requirements. In this paper, we propose a new hybrid QoS management model which defines a static-dynamic QoS parameter that is more appropriate to the ubiquitous computing environment. This model consists of the QoS Control Management Module(QoS CMM) in the client side and the Resource QoS Management Module (RQoS MM) in the server side. The RQoS MM deals with the static QoS parameters and the whole QoS control of the distributed control(QoS CMM) in order to minimize server load in cases of multiple communication. Finally, we present the experimental result of our location based application using a graphical user interface that shows the multimedia service execution of selected client device types such as desktop PC, notebook and PDA.