• Title/Summary/Keyword: 하이드라진

Search Result 115, Processing Time 0.027 seconds

KSLV-I 하이드라진 추력기 제어기의 진동 해석 및 검증 시험

  • Kim, Ji-Hun;Jung, Ho-Lak;Jeon, Sang-Woon;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 2005
  • Electronic components for space launch vehicles are exposed to a severe vibrational environment at launch and flight. The structural reliability of each component can be verified using mathematical approaches. In order to verify the structural reliability, an important parameter is the natural frequency of PCB(Printed Circuit Board) assembly mounted electronic components on and housing mounted PCB assembly in. In this paper, in order to find natural frequencies of PCB assemblies and the housing of hydrazine TCU(Thruster Control Unit), FEM(Finite Element Method) is adapted. The analytical result of FEM is verified by experimental method.

  • PDF

A Theoretical Performance Analysis of Small Liquid Rocket Engine for Space Vehicle Attitude Control (우주비행체 자세제어용 소형 액체로켓엔진의 이론성능 해석)

  • Kim Jeong-Soo;Park Jeong;Kim Sung-Cho;Choi Jong-Wook;Jang Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-200
    • /
    • 2005
  • A theoretical model for the calculation of chemical equilibrium composition of propellant combustion product is briefly presented for the performance analysis of monopropellant hydrazine rocket engine. Analysis result is compared to that of test and evaluation of 1-lbf class thruster and is scrutinized primarily from the view point of ammonia dissociation fraction. Chemical equilibrium composition and average molecular weight is additionally depicted according to the variation of propellant inlet pressures and the varying nozzle area ratio. The theoretical analysis is tried as a way of derivation of design parameters for mid- and large-thrust class of monopropellant rocket engines.

  • PDF

Investigation on the Change of Ammonia Dissociation for Satellite Thruster According to the Catalyst Loss (위성추력기에서 촉매유실에 따른 암모니아 해리도 변화에 대한 연구)

  • Hwang, Chang-Hwan;Lee, Sung-Nam;Baek, Seung-Wook;Kim, Su-Kyum;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.218-222
    • /
    • 2011
  • During the development of the iridium catalyst for domestic production, the catalyst failure, loss, sintering phenomena are observed by high pressure and temperature. By these abnormal failure of catalyst bed, the performance of thruster is degraded. To figure out the detail phenomena on the damaged catalyst bed, a numerical analysis code is developed by assuming the catalyst bed as an one dimensional porous media. The numerical analysis code is validated with experiment data. Thereby, resulting physical phenomena are examined by considering the variation of catalyst bed characteristics incurred by catalyst granule failure. Through these numerical analyses we figure out the effect of the catalyst loss on the decomposition of hydrazine and ammonia.

  • PDF

Development of Long-Life Performance Test Equipment & Evaluation Plan for Hydrazine Decomposition Catalyst (액체추진제 분해촉매 장기성능시험장치 개발 및 평가방안)

  • Kim, In-Tae;Kim, Jung-Hun;Lee, Jae-Won;Jang, Ki-Won;Yu, Myoung-Jong;Kim, Su-Kyum;Lee, Kyun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.407-412
    • /
    • 2006
  • Most of the monopropellant thrusters use catalyst for decomposing hydrazine. The thruster lifetime is determined mainly by catalyst lifetime, which can be investigated by firing tests. For the development of hydrazine decomposition catalyst, Hot-fire test to verify long-life performance of catalyst is required. This study describes the development of test equipment for long duration hot-firing and test/evaluation plan.

  • PDF

Development of Attitude Control Thruster for KOMPSAT (다목적 실용위성 자세제어용 추력기 개발)

  • 이성택;이상희;최영종;류정호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.67-73
    • /
    • 1997
  • This paper shows the development status of attitude control thruster for KOMPSAT(Korea Multi-Purpose Satellite). Hanwha Corp. has manufactured and delivered 1.0 lbf monopropellant thrusters under the technology transfer of TRW Co. in U.S.A regarding design, analysis and manufacturing of MRE-1 thruster These thrusters will be installed to KOMPSAT which is scheduled to be launched in July 1999. Monopropellant thrusters can provide reliable and cost-effective means of propulsive control for middle class satellite and maneuvering control systems. Some information concerning with system specification, performance analysis/simulations and manufacturing process has been introduced in this paper.

  • PDF

A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part I : Thermal Decomposition Reaction of Monomethylhydrazine (우주추진용 모노메틸하이드라진 반응에 대한 주요 해외연구 동향 조사 Part I : 모노메틸하이드라진의 열분해 반응)

  • Jang, Yohan;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Space propulsion system produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer typically. For example, monomethylhydrazine-dinitrogen tetroxide, liquid hydrogen-liquid oxygen and RP-1-liquid oxygen are conventional combinations of liquid propellants used for the liquid propulsion system. Among several liquid propellants, the monomethylhydrazine is expecially preferred for a satellite fuel due to its better storability in liquid phase during a relatively long mission period under a space environment. Thus, a development importance of a bipropellant system using the monomethylhydrazine fuel is recognized recently as the national space program proceeds on a large scale. The objective of the present study is to review a foreign research trend of a thermal decomposition reaction of monomethyhydrazine to understand a fundamental basis of its chemical reaction to prepare for domestic development in future.

Hot Firing Performance Measurement of Monopropellant Decomposition Catalyst and Domestic Development Status (단일추진제용 이리듐촉매의 연소성능 측정 및 국내개발 현황)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;Jang, Ki-Won;Cho, Sung-June
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.109-117
    • /
    • 2006
  • Hot firing performance test of hydrazine decomposition catalyst used for monopropellant thruster of satellite and launch vehicle was performed on the ground. A test equipment for hot firing performance measurement of catalyst test was developed in collaboration with Hanwha Corp., and the catalyst firing performance were tested with the equipment. After a reaction delay time, a catalyst activity and a granule stability were measured for 2 times, satisfactory results were obtained such as 25msec, 2%, $704^{\circ}C$ for each test items on the average. In addition, the current development status of domestic prototype catalyst and its decomposition performance test results are presented.

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 2: A Practical Application of Flight-axes/Attitude Control Thrusters to the Space Launch Vehicle and Their Design Development Localization (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 2: 비행축/자세제어용 추력기의 우주발사체 적용과 국내 설계개발)

  • Kim, Jeong-Soo;Bae, Dae-Seok;Jung, Hun;Seo, Hang-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.179-182
    • /
    • 2011
  • A practical application of flight-axes/attitude control thrusters to the space launch vehicle and their design development localization are investigated and analyzed. Hydrazine thrusters are mostly used in a final stage of space launch vehicles on account of its higher specific impulse and reliability necessary for the precise attitude control attaining the orbit insertion with higher accuracy.

  • PDF

An Investigation on the Macroscopic Spray Behavior of Nonimpinging-type Injector through Optical Measurement Technique (광학계측기법에 의한 비충돌형 인젝터의 거시적 분무거동 고찰)

  • Kim, Jong-Hyun;Jung, Hun;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.143-148
    • /
    • 2012
  • This study is an investigation on macroscopic spray behavior of nonimpinging-type injector equipped on the hydrazine thruster under development. An electron microscope is employed for the acceptance examination of injector orifice. Initial performance characteristics and spray behavior of injector are observed through the instantaneous spray images which are captured by high speed camera and Schlieren method with varying injection pressures. The injector performance is scrutinized by the velocity along with penetration length of spray and categorized by dimensionless parameters. It is confirmed that there exist varying characteristics related to the spray breakup caused by fabrication errors of injector-orifices. Unexpected spray behavior, which needs to be reexamined, is grasped at specific pressure level, as well.

  • PDF

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF