• Title/Summary/Keyword: 하수 찌꺼기

Search Result 10, Processing Time 0.019 seconds

음식물지꺼기 고온산발효산물과 하수슬러지의 혼합처리

  • Jang, Seong-Ho;An, Cheol-U;Park, Jin-Sik;Mun, Chu-Yeon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.351-354
    • /
    • 2006
  • 본 연구에서는 산발효산물과 하수슬러지의 혼합소화를 위한 적정 혼합비를 도출을 위하여 음식물찌꺼기 고온 산발효산물과 하수슬러지의 생분해 특성과 적정혼합비를 도출하고자 수행한 결과 음식물찌꺼기 고온 산발효액과 하수슬러지를 혼합비별로 회분식 혼합소화 실험을 실시 한 결과 혼합비 1:1에서 385ml CH$_4$/g VS$_{added}$로 가장 높은 메탄발생량을 나타내었다. 이러한 결과는 음식물찌꺼기와 하수슬러지를 1:1로 동일하게 혼합하여 비교 소화실험을 실시했을 때 의 293m1 CH$_4$/g VS$_{added}$와 비교하여 상대적으로 높은 메 탄발생량을 나타내었다.

  • PDF

Research on Improving Drying Technology For Sewage Waste Using Direct Flotation Using Heat Storage Media (축열메디아 활용 직접부상방식을 이용한 하수찌꺼기의 건조기술 향상에 관한 연구)

  • Sung-Il Noh;Ung-Yong Kim;Sung-Gyun Jo;Hyun-Gon Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.5-11
    • /
    • 2023
  • This study was conducted to improve energy efficiency and problems such as clumping and fouling in the glue zone that occur in the moisture content range of 40 to 60% when sewage dehydration residue is directly fed into the dryer. The temperature of the hot air is low at 270~300℃, and the paddle-type flotation method and dehydrated residue are applied to the circulated heat storage media to increase the contact area with the hot air, thereby reducing energy recovery and gas emissions. The water content of the dried residue is 2.7. ~7 .5%, the heat of evaporation of moisture was 608.0~690.6 kcal/kg·H2O, which confirmed an energy saving effect of about 8.8% compared to the heat of evaporation of moisture of 714.5 kcal/kg·H2O when no heat storage media was used.

Effects of Mixing Ratio and Organic Loading Rate of Acid Fermented Food Wastes and Sewage Sludge on the Anaerobic Digestion Process (음식물찌꺼기 산발효산물과 하수슬러지의 혼합비 및 유기물부하가 병합처리에 미치는 영향)

  • Ahn, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • This study has been conducted for the process of food wastes disposal using surplus capacity of established sewage treatment plant by co-digestion of fermented food wastes and sewage sludge after thermophilic acid fermentation of food wastes. The co-digestion of thermophilic acid fermented food wastes and sewage sludge was performed by semi-continous method in mesophilic anaerobic digestion reactor. It showed great digestion efficiency as the average SCOD and VS removal efficiency in organic loading rate 3.30g VS/L.d. were 74.2% and 73.6%, and the gas production rate and average methane content were 0.440 L/g $VS_{add}.d$ and 66.5%, respectively. Based on the results of this study, the co-digestion of thermophilic acid fermented food wastes and sewage sludge in sewage treatment plant is able to improve treatment efficiency of anaerobic digestion reactor and to dispose food wastes simultaneously, and was proved excellent economical efficiency comparing with any other treatment methods.

유기물부하에 따른 음식물지꺼기의 산발효

  • Jang, Seong-Ho;An, Cheol-U;Park, Jin-Sik;Mun, Chu-Yeon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.355-357
    • /
    • 2006
  • 본 연구에서는 산생성효율의 최적 운전인자 도출을 위하여 중온 및 고온혐기성산발효공정에서의 유기물부하에 따른 산발효 효율을 비교 검토하였으며, 다음과 같은 결론을 얻었다. 유기물 부하별로 고온과 중온 조건에서 실험을 진행했을 때 VFA생성과 pH변화를 비교했을 때, 고온 조건이 중온조건보다 더 높은 부하율에서 운전이 가능한 것으로 나타났으며, 생성되는 VFA의 농도도 더 높은 것으로 나타났으며, pH의 변화는 고온 조건에서 4.8$\sim$6.2, 중온 조건에서 5.8$\sim$6.7로 고온에서 중온보다 pH가 낮게 나타났다. 고온과 중온에서 유기물 부하별로 산발효시 생성된 유기산의 구성성분을 비교했을 때, 고온에서 생성된 유기산이 중온보다 acetic acid의 비율이 높은 것으로 나타났다. 음식물찌꺼기 고온 산발효액의 성상에서 $SCOD_{Cr}$/TKN, $SCOD_{Cr}$/T-P이 각각 18.9, 73.4로 나타나 하수처리장에서 저부하 유기물 유입시에 탄소원으로 충분히 활용 가능한 것으로 판단된다.

  • PDF

Identifying Cost and Benefit Items of Investment Projects to Offer New Public Services By the Use of Food Waste Disposers and the Direct Input of Feces in Sewers (주방오물분쇄기 사용 및 수세분뇨의 직투입에 따른 「새로운 공공하수도 서비스」제공을 위한 투자사업의 비용과 편익 항목 식별)

  • Oh, Hyun-Taek;Park, Kyoo-Hong;Kim, Sung Tai;Lim, Byung In
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.117-125
    • /
    • 2020
  • Our study identifies a cost and a benefit incurred in implementing an investment project to offer new public services by use of food waste disposers and direct input of feces in sewers. This is done with identifying costs of each processing division and benefits of the project by objective statistical data and engineering perspective. In summary, cost items identified are as follows: there are house laterals, removal of septic tanks, etc. for sewer pipes system. As to water quality conservation, cost incurs in storm water outfalls and divert chambers, sewage storage tanks, equipment to treat sewer overflows, and so on. With respect to sewage treatment plants(STPs), there are so many items as increase of contaminant loads in influent of STPs, and other items. There are benefit items in health improvement due to odor mitigation, increase of energy productivity, saving cost of food waste treatment and cleaning septic tanks, etc. These estimates will be used as a basic data for its economic effect.

Co-digestion of Thermophilic Acid-fermented Food Wastes and Sewage Sludge (음식물찌꺼기 고온산발효산물과 하수슬러지의 혼합처리)

  • Ahn, Chul-Woo;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.897-905
    • /
    • 2006
  • This study has been conducted to investigate biodegradation characteristics and optimum mixing ratio for co-digestion with thermophilic acid-fermented food waste and sewage sludge using batch anaerobic digester. As the basis operating conditions for anaerobic digestion, the reaction temperature was controlled $35{\pm}1^{\circ}C$ and stirrer was set 70rpm. Thermophilic acid-fermented food waste and sewage sludge were mixed at the ratio of 10:0, 7:3, 5:5, 3:7, 0:10 and 5;5(food waste : sewage sludge) as the influent substrates. In results of co-digestion according to mixing ratio of thermophilic fermented food wastes and sewage sludge in batch mesophilic anaerobic digestion reactor, $385mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio was more than that of any other mixing ratios. Compared with $293mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio of food wastes and sewage sludge, pretreatment of food wastes by thermophilic acid fermentation was more effective in co-digestion with sewage sludge.

State and Prospects of Organic Waste Composting in Korea (유기성 폐기물의 자원화 가능성 및 퇴비 이용 전망 평가)

  • Shin, Hang-Sik;Hwang, Eung-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.7-30
    • /
    • 1998
  • Generation and recycling potential of organic waste in Korea were estimated. Status of organic waste composting and compost utilization also were surveyed to promote the recycling of organic waste. From 1994 to 1997, generation of garbage decreased gradually while recycling rate increased due to positive governmental strategy. During the same period, livestock waste increased 11.2%. Municipal wastewater sludge was generated 3,500 ton/day which was 0.03% of wastewater treated in 1996. The energy Potential of industrial organic waste was estimated to 288 million TOE which was 1.75% of the nationwide first energy consumption in 1996. Recycling of industrial sludge was low to 31%, while recycling of animal waste, plant scraps, and wasted paper were relatively high over 50%. Industrial sludge should be recycled more as it was the most part of industrial organic waste. Conventional composting materials were mainly livestock waste, food processing waste, fishery waste, sawdust, and nightsoil. Garbage and sludge have been composted recently. 420,000 tons of compost in 1996 were produced by 288 makers, the most of which were utilized in agriculture. It was suggested that separated collection, compost standard, and quality management should be provided to promote the composting of organic waste.

  • PDF