• Title/Summary/Keyword: 하모닉 드라이브

Search Result 7, Processing Time 0.02 seconds

A Switching Notch Filter for Reducing the Torque Ripple Caused by a Harmonic Drive in a Joint Torque Sensor (하모닉 드라이브의 토크리플 감소를 위한 조인트 토크센서용 스위칭 노치필터)

  • Kim, Joon-Hong;Kim, Young-Loul;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.709-715
    • /
    • 2011
  • Harmonic drives have been widely used in combination with joint torque sensors in order to facilitate accurate manipulator control. A harmonic drive causes a torque ripple because of its structural characteristics, and this torque ripple tends to deteriorate the performance of a controller or observer that uses torque sensors. This paper proposes a switching notch filter for reducing the torque ripple caused by a harmonic drive in a joint torque sensor; the functioning of this filter is based on the relationship between the frequency components of the torque ripple and the rotational velocity of the harmonic drive. The proposed switching notch filter is advantageous in that it requires less computational load and does not necessitate additional circuits or structures. Various experiments demonstrate that the proposed filter has good filtering performance, fast response, and good switching stability.

A Study on Nonlinear Controller of DC Servo-motors with Harmonic Drive Gearing and Its Synchronous Operation (하모닉 드라이브를 가진 DC 서보 모터의 비선형 제어기와 동기 운전에 관한 연구)

  • 김연태;최정원;홍동기;이석규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.60-70
    • /
    • 1998
  • A harmonic drive is compact torque transmission device with no backlash which is widely applied in industrial field to transmit torque precisely. However, one of the disadvantages of harmonic drives is the existence of mechanical flexibility caused by its structural properties, which imposes great limitation on designing precise controller This paper proposes a nonlinear controller for synchronous operation of DC servo-motors with harmonic drive, using Integrator Backstepping method. Furthermore, an alternative algorithm for serial type synchronous operation of multiple DC servo-motors is proposed. Simulation results by SIMULINK for proposed controller shows considerably small error and rapid approach to reference input, which can be adapted to industrial applications.

  • PDF

Structural Analysis for Silk Hat type of the Harmonic Drive for Precision Robot (정밀 로봇용 하모닉 드라이브의 실크 햇 형상에 따른 구조해석)

  • Nam, W.K.;Ham, S.H.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.61-66
    • /
    • 2011
  • Recently, the speed reducer which is applied to robot has conducted a steady development on developments in the field of robotics. Among them, Harmonic drive is a high-stiffness, precision-controlled speed reducer and has high precision, compact, light in weight and high-reduction-ratio characteristics. The feature of flexspline of Harmonic Drive are two types. One is Cup type, the other is Silk Hat type. Silk Hat type is used in case of lighter and more compact in spatial because Silk Hat Type is hollow. According to the shape of silk hat, diaphragm is fractured because stress is concentrated. In this paper, the various shapes of silk hat are suggested to improve the durability of silk hat. And in the case of each shape, a study on stress and deformation using the FEM tool was carried out on flexspline.

Design of a Novel 3D Printed Harmonic Drive and Analysis of its Application (3D 프린팅 기법을 이용한 하모닉 드라이브(Harmonic Drive) 설계 및 응용 분석)

  • Kim, Sang-Hyun;Byeon, Chang-Sup;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.27-31
    • /
    • 2022
  • Harmonic drives have attracted increasing attention with the development of materials, parts, and related equipment. Harmonic drives exhibit high deceleration, high accuracy, and light weight. The stiffness of flexible splines according to the radial load is studied using a commercial FEM program to design the structure of the flexible spline and finite element to improve the weight and price competitiveness of harmonic drives. In addition, several studies have measured and compared friction coefficients based on 3D printed tread patterns. However, owing to the characteristics of plastic materials, a decrease in stiffness in the radial direction is inevitable. To prevent a decrease in stiffness in the radial direction, we designed and manufactured flex splines with a wrinkle shape. Through structural analysis, the reaction force and stiffness in the radial direction were determined. In addition, the maximum angle of the mound was derived by theoretical calculations, and the performance of the harmonic drive was compared with the results obtained in the mound experiment. Structural analysis shows that the shape of wrinkles decreased the stress and reaction force and increased the safety factor in comparison with that of the circular shape. During performance verification through continuous experiments, the developed harmonic drive showed continuous performance similar to that of an actual tank model. It is expected that the flex spline with a compliant spring and wrinkle shape will prevent a decrease in the radial stiffness.

Analysis of Chattering Problem of a Glass Transfer Robot Hand (글래스 반송용 로봇핸드의 채터링 원인 해석)

  • Kim Joo-Yong;Kang Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2005
  • A glass transfer robot is used for handling LCDs in the production line of flat panel displays under clean environments. During glass transfer operations of the robot, chattering phenomenon occurs at the robot hand. This deteriorates the accuracy and repeatability of the end-effector of the robot. In this paper, we present the kinematic solution of the robot and then analyze the cause of this chattering phenomenon in view of the mechanism and servo control and propose a practical solution that can reduce the chattering significantly at the robot hand of the glass transfer robot.