• Title/Summary/Keyword: 하구배

Search Result 61, Processing Time 0.028 seconds

Estimation of material budget for Keum river estuary using a Box Model (BOX 모델을 이용한 금강 하구해역의 물질수지 산정)

  • Kim Jong-Gu;Kim Dong-Myung;Yang Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.76-90
    • /
    • 2000
  • The estimation of material cycle of pollutants is necessary for the environment management in coastal zone. Model for material budgets are useful tools to understand the phenomena of natural system and to provide an insight into the complex processes including physical, chemical and biological processes occuring in natural system. Budgets of fresh water, salt and nutrients were estimated in order to clarify the characteristics of seasonal material cycle in Keum river estuary. Inflow volumes of freshwater into system was approximately 1.014×10/sup 8/~12.565×10/sup 8/m³/month and discharge in Keum river has occupied 99.7% of total freshwater. Seasonal variations of freshwater volume in the system were found to be very high in the range of about 4 ~ 14 times due to rainfall in summer season. Existing water mass of freshwater in system calculated by salt budget was approximately 0.339×10/sup 8/~0.652×10/sup 8/m³. Mean residence time of freshwater was calculated to be about 1.6~10.0day, and exchange time was calculated to be about 2.2~11.9day. Mean residence time was short as 1.6day in summer due to precipitation, and long as 10.1day in winter due to a drought. Inflow masses of DIP and DIN were approximately 5.57~32.68ton/month and 234.93~2,373.39ton/month, respectively. Seasonal inflow mass of DIP was larger than the outflow mass except for summer season. Thus, we postulate that accumulation of DIP in the system will happen. Residence times of DIP and DIN were calculated to be 1.1~6.4day and 1.8~10.9day, respectively. The ratio of water residence time versus DIP, DIN residence time was calculated to be 0.39~2.31 times and 0.83~1.13 times, respectively.

  • PDF

Distribution of the Seagrass in the Nakdong River Estuary (낙동강하구의 잘피(seagrass) 분포 현황)

  • Jung-Im Park;Hee Sun Park;Jongil Bai;Gu-Yeon Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.207-217
    • /
    • 2023
  • This study was conducted to investigate the current status of seagrass species in the Nakdong River estuary from May to June 2023. To survey the seagrass habitat area, the Nakdong River estuary was divided into seven zones. Aerial photography using drones was conducted to find seagrass areas, GPS tracking was carried out on foot in the intertidal zone and by boat and SCUBA diving in the subtidal zone. To analyze the seagrass status, we measured the morphological characteristics, shoot density, and biomass of representative seagrass species in each zone. Four seagrass species were found in this area: Zostera japonica, Z. marina, Ruppia maritima, and Phyllospadix japonicus. The distribution areas of each species was 338.2 ha, 92.9 ha, 0.9 ha, and 1.4 ha, respectively, with a total area of 432.5 ha. Z. japonica was widely distributed in most of the tidal flats and mudflats of the Nakdong River estuary, while Z. marina was restricted to Nulcha-do, Jinu-do, and Dadae-dong. R. maritima occurred within the habitat of Z. japonica in Eulsukdo and Myeongji mudflats, and P. japonicus inhabited rocky areas in Dadae-dong. The shoot density of each species was 4,575.8±338.3 shoots m-2, 244.8±12.0 shoots m-2, 11,302.1±290.0 shoots m-2, and 2862.5±153.5 shoots m-2, respectively. The biomass of each species was 239.7±18.5 gDW m-2, 362.3±20.5 gDW m-2, 33.3±1.2 gDW m-2, and 1,290.0±37.0 gDW m-2, respectively. The results of this study revealed that Z. japonica was dominant in the Nakdong River estuary. In particular, Z. japonica habitats of Eulsukdo, Daema-deung, and Myeongji mudflats were identified as the largest in Korea. The Nakdong River estuary is an important site of ecological, environmental, and economic value, and will require continuous investigation and management of the native seagrasses.

Unrecorded Aedes (Edwardsaedes) bekkui (Diptera: Culicidae) from Korea: Notes on Taxonomic Diagnosis of Adult and Larva (한국산 모기과의 미기록종 베꾸숲모기(Aenes bekkui) : 성충 및 유충의 분류학적 특징에 관하여)

  • ;Rob
    • Parasites, Hosts and Diseases
    • /
    • v.25 no.2
    • /
    • pp.210-212
    • /
    • 1987
  • 한국산 모기에 대한 조사연구사업의 일환으로 1387년 6월 경기도 남양주군 광릉에 위치한 임업시험장 일대에서 야외채집을 실시한 결과 미기록종 Aedes bekkui(베꾸숲모기)를 채집하였기에 이를 보고한다. 성충의 특징은 기문하구(subspiracular area)에 작을 강모가 없는 점이고, 유충의 특징은 머리털 4-C와 6-C의 간격이 좁고 5,6-C의 크기와 모양은 서로 대등하며 6,7-C의 간격은 5,6-C의 간격보다 2배이상 넓다는 점이다. 또 꼬리틸 3-X는 단모로 되어 있고 2-X보다 상당히 길다. Tanaka의 검색표에 따르면 Aedes bekkui 성충의 특징은 아속 Edwardsaedes와 일치되지만 유충은 아속 Aedimorphus에 일치된다. 이는 Belkin이 처음 아속 Edwardsaedes를 확립할 때 유일하게 Aedes imprimens를 단모식 표본종(monotypic species)으로 이용하여 그 특징 열거에 있어 너무 단조로 왔기 때문이며 또한 일본에서 A. imprimens가 A. bekkui로 판명되기까지 자충의 특징만이 기록되어 왔기 때문이다. 그러므로 과거 한국에서 보고된 A. imprimens도 일본의 경우와 같이 A. bekkui의 오식종이었을 것으로 생각된다.

  • PDF

A study on the way on energy efficiency of regenerative braking (전력회생 브레이크의 에너지 효율화 방안 연구)

  • Park, Young-Jin;Moon, Kwan-Il;Shin, Min-Sik;Son, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.204-212
    • /
    • 2010
  • Currents which are generated at both ends of drive motor by operating brake pedal when subway train is driving, will generate the reviltalization actual effect if they are not used immediately. So there exist rolling stock established Dynamic braking annex for the purpose of stable brake performance in case there are no retrogress train around or no stable wiring voltage.Therefore 55% of entered energy are consumed in subway train. 45% are used in down gradient section or for regeneration energy and among them 25% are used for another train's retrogression through the wiring. So to reduce reviltalization method keeping the existing system, substation's service voltage should be declined about 5%. And then it will ease off excessive wiring voltage rise. And there need energy reduction by flexible service voltage adjustment and study for energy consumption efficiency in the subway.

  • PDF

Distributions of Urea and Urea Decomposition Rates in an Estuarine System of Mankyung and Dongjin Rivers, Korea (만경.동진강 하구계에서 요소와 요소 분해속도의 분포)

  • 심재형;조병철
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.402-413
    • /
    • 1994
  • To understand the significance of urea in the pool size of nitrogenous nutrients and in nitrogen (N) requirements of primary producers in and estuarine system of Mankyung and Dongjin rivers nutrients, and urea decomposition rates between June 1992 and February 1994. Urea concentration during the study period ranged from undetectable to 12.5 ug-at. N 1/SUP -1/, contributing to 0-96% (mean of 11%) of the total nitrogenous nutrients in the study area. Urea comprised a major component of the total nitrogenous nutrients when concentration of total nitrogenous nutrients was low. Urea decomposition rates in the water column ranged from 0.02 to 5.77 nM h/SUP -1/, and netplankton was the major decomposer of urea. Vertical distributions of urea decomposition rates in the water column showed generally small variabilities (i.e. < 3 fold). The decomposition rates of urea in the MD estuary would supply 0.2 ∼88.4% of phytoplankton N requirements. The major contribution of urea to phytoplankton N requirements was found when phytoplankton production was low (<50 mg C m/SUP -2/d/SUP -1/).

  • PDF

Accumulation Levels and Distribution Characteristics of Polychlorinated Biphenyls in Crucians and Leopard Frogs from the Nakdong River Basin (낙동강 유역에 서식하는 붕어와 황소개구리 체내의 Polychlorinated biphenyls의 축적도와 분포특성)

  • Moon, Ji Yong;Lee, Sung In;Song, Heeyoung;Lee, Kyoung Jin;Choi, Kyunghee;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2004
  • We collected crucians (Carassius auratus) and leopard frogs(Rana pipiens) along the Nakdong River and the basin area at five locations from Koomi to Nakdong-estuary. The muscular tissue were separated and a GC-MSD system was used for quantification of PCBs. The 62 PCB congeners which represent total PCB levels were selected as analytes. We determined concentrations of PCBs and studied distribution characteristics by individual congeners and homologs. In the crucian, 24 congeners were detected and total PCB levels ranged from 0.74 to 5.41 ng/g wet weight. In the leopard frog, however, only 2 congeners were detected from Nakdong estuary only. The PCB level was 0.24 ng/g wet weight, around 22 times lower than the crucians. The PCB 153 showed the highest concentrations in the congeners and penta- and hexa-CBs showed the strong predominance which accounted for 78% of the total PCBs.

Nakdong River Estuary Salinity Prediction Using Machine Learning Methods (머신러닝 기법을 활용한 낙동강 하구 염분농도 예측)

  • Lee, Hojun;Jo, Mingyu;Chun, Sejin;Han, Jungkyu
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Promptly predicting changes in the salinity in rivers is an important task to predict the damage to agriculture and ecosystems caused by salinity infiltration and to establish disaster prevention measures. Because machine learning(ML) methods show much less computation cost than physics-based hydraulic models, they can predict the river salinity in a relatively short time. Due to shorter training time, ML methods have been studied as a complementary technique to physics-based hydraulic model. Many studies on salinity prediction based on machine learning have been studied actively around the world, but there are few studies in South Korea. With a massive number of datasets available publicly, we evaluated the performance of various kinds of machine learning techniques that predict the salinity of the Nakdong River Estuary Basin. As a result, LightGBM algorithm shows average 0.37 in RMSE as prediction performance and 2-20 times faster learning speed than other algorithms. This indicates that machine learning techniques can be applied to predict the salinity of rivers in Korea.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Seasonal Variations of Water Quality in the Lower Part of the Nagdong River (낙동강 하류수질의 계절적 변화)

  • KIM Yong-Gwan;SHIM Hye-Kung;CHO Hak-Rae;YOU Sun-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.511-522
    • /
    • 1984
  • The Nagdong is one of the biggest rivers in Korea, which is very important water source not only for tap water of Pusan city but also for the industrial water. Therefore, authors tried to check the water quality year by year. In this experiment one hundred and twenty water samples collected from August 1983 to July 1984 were analyzed bacteriologically and physiologically. Fifteen sampling stations were established between near Samrangjin and estuary of the river. To evaluate the water quality, temperature, pH, chloride ion, salinity, chemical oxygen demand (COD), electrical conductivity, nutrients, total coliform, fecal coliform, fecal streptococcus, viable cell count and bacterial flora were observed. The variation of water temperature was ranged $-1.5{\sim}29.0^{\circ}C$ (Mean value $13.9{\sim}16.5^{\circ}C$), it in spring was higher as $10{\sim}15^{\circ}C$ about $10^{\circ}C$ than in winter and it in autumm was very stabilized as about $20^{\circ}C$ at each station. The pH variation of the samples was ranged $6.68{\sim}9.15$. The range of concentration of chloride ion and salinity varied $7.4{\sim}l,020.5$ mg/l and $1.05{\sim}33.0\%0$, respectively. Especially, salinity of the 3rd water war was the higher than others as $25.76{\sim}31.58\%0$. COD was ranged $1.45{\sim}14.94$ mg/l and the lower part of the Nagdong River was heavily contaminated by domesitc sewage and waste water from the adjacent factor area. The range of electrical conductivity was $1.360{\times}10^2{\sim}5.650{\times}10^4{\mu}{\mho}/cm$ and that was by far higher the estuary than the upper. Concentration of nutrients were $0.008{\sim}0.040$ mg/l (Mean value $0.019{\sim}0.068$ mg/l) for $NO_2-N,\;0.038{\sim}5.253$ mg/l ($0.351{\sim}2.347$ mg/l) for $NO_3-N,\;0.100{\sim}2.685$ mg/l($0.117{\sim}1.380$ mg/l) for $NH_4-N,\;0.003{\sim}0.084$ mg/l($0.014{\sim}0.065$ mg/l) for $PO_4-P$ and $0.154{\sim}6.123$ mg/l ($1.165{\sim}3.972$ mg/l) for $SiO_2-Si$, respectively. Usually nutrients contents of the water in the upper part(included station 1 to 5) were higher than those of the estuarine area. The bacterial density of the samples ranged 7.3 to 460,000/100 ml for total coliforms, 3.6 to 460,000/100 ml for fecal coliform, $0{\sim}46,000/100ml$ for fecal streptococcus and $<30{\sim}1.2{\times}10^5/ml$ for viable cell count. Composition of coliform was $28\%$ Escherichia coli group, $18\%$ Citrobacter freundii group, $31\%$ Enterobacter aerogenes group and $22\%$ others. Predominant species among the 659 strains isolated from the samples were Pseudomonas spp. ($42\%$), Flavobacterium spp. ($20\%$) and Moraxella spp. ($12\%$).

  • PDF

Formation and Evolution of Turbidity Maximum in thd Keum Estuary, West Coast of Korea (금강 하구에서의 최대혼탁수 형성 및 변화에 대한 연구)

  • 이창복;김태인
    • 한국해양학회지
    • /
    • v.22 no.2
    • /
    • pp.105-118
    • /
    • 1987
  • A series of anchor stations were occupied along the Keum EAstuary during six different periods of tidal and fluvial regimes. The results clearly show that the formation and evolution of the turbidity maximum play an important role in the sedimentary processes in this environment. The turbidity maximum in the Keum Estuary is primarily related to the tidal range at the mouth and is caused by the resuspension of bottom sediments. In this estuary, the turbidity maximum is not a permanent feature and shows semidiurnal, fortnightly and seasonal variations. Repetition of deposition and resuspension of fine sediments occur in response to the variation in current velocity associated with semidiurnal tidal cycles. The core of turbidity maximum shifts landward or seaward accordion to the flood-ebb succession. The turbidity maximum also shows a fortnightly variation in response to the spring-neap cycles. Thus, the turbidity maximum degenerates during neap-tide and regenerates during spring-tide. The freshwater discharge is also an important factor in the formation and destruction of the turbidity maximum. The increase in freshwater discharge in rainy season can create an ebb-dominant current pattern which enhances the seaward transport of suspended sediments, resulting in the shortening of residence time of suspended materials in the estuary. Thus, under this high discharge condition, the turbidity maximum exists only during spring-tide and starts to disappear as the tidal amplitude decreases.

  • PDF