• Title/Summary/Keyword: 필터링 기법

Search Result 1,144, Processing Time 0.033 seconds

A Real-time Context Recognition Recommendation System Using Post-Filtering (사후 필터링기법을 사용한 실시간 상황 인식 추천 시스템)

  • Choi, Kwang-Hoon;Yu, Heonchang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.493-496
    • /
    • 2018
  • 추천 시스템은 다양한 분야에 적용되는 기술로서 활발한 연구가 진행되고 있고 기존 추천 시스템의 성능을 높이기 위해서 더욱 개인화된 차세대 추천 시스템의 필요성이 대두되고 있다. 본 논문은 하이퍼 개인화 범주에 속하는 사후 필터링기법을 사용한 실시간 상황 인식 추천 시스템을 제안한다. 실시간 상황 인식 추천 시스템은 사용자 행동과 계속적인 동기화로 현재 상황에 가장 적합한 추천 목록을 생성하기 때문에 사용자 기반 협업 필터링 (User Based Collaborative Filtering), 콘텐츠 기반 필터링(Content-based Filtering), 특이값 분해(Singular Value Decomposition)보다 훨씬 미래 지향적인 추천 시스템이다.

A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges (기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안)

  • Cho Nwe Zin, Latt;Muhammad, Firdaus;Mariz, Aguilar;Kyung-Hyune, Rhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.25-40
    • /
    • 2023
  • Recommendation systems are frequently used by users to generate intelligent automatic decisions. In the study of movie recommendation system, the existing approach uses largely collaboration and content-based filtering techniques. Collaborative filtering considers user similarity, while content-based filtering focuses on the activity of a single user. Also, mixed filtering approaches that combine collaborative filtering and content-based filtering are being used to compensate for each other's limitations. Recently, several AI-based similarity techniques have been used to find similarities between users to provide better recommendation services. This paper aims to provide the prospective expansion by deriving possible solutions through the analysis of various existing movie recommendation systems and their challenges.

Definition and Implementation of Image Enhancement Techniques for Efficient Binarization (효과적인 이진화를 위한 영상개선기법의 정의 및 구현)

  • Choe, Gyeong-Ju;Byeon, Hye-Ran;Lee, Il-Byeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.2
    • /
    • pp.284-296
    • /
    • 1999
  • 문자 인식 및 영상 인식 분야의 대부분의 연구들은 이진영상(binary image)을 바탕으로 이루어진다. 하지만, 입력영상에서 보다 많은 정보를 얻기 위해 명도영상(grayscale image) 으로 입력받아 필요한 정보를 추출한후 이진영상으로 변환하여 처리하는 방법도 많이 사용되고 있다. 이런 경우, 명도영상으로부터의 보다 깨끗한 이진영상의 획득 여부는 시스템의 성능과도 밀접한 관계가 있다. 본 논문에서는 기존의 대부분의 이진화 방법과는 달리, 실제 이진화를 수행하기 이전에 여러 가지 필터링 기법을 사용하여 영상의 질을 개선시키는 영상개선기법을 사용한후, 기존의 이진화방법을 사용하여 명도영상을 이진화하는 방법을 제안하고자 한다. 영상의 질을 개선시키기 위해서 BM 필터링, 경게선 개선 필터링, Erosion필터링 방법을 사용하였으며 , 기존의 이진화방법으로는 전역적 이진화 방법중 하나로써 클래스간 분산을 이용한 Ostu 방법[1]을 사용하였다. 다양한 종류의 문서를 대상으로 실험하였는데 평가실험에 사용된 영상은 문서 특성에 따라 균일하지 않은 배경을 가진 영상, 순수하게 텍스트로만 구성된 영상, 선성분이 많으며 명도값이 다양하게 나타나는 영상, 텍스트와 선성분이 함께있는 영상 등 크게 4가지 부류로 구분하였고, 평가대상 영상에 대해 매개변수의 개수, 끊어진/잃어버린 /뭉게진 물체가 적은 정도, 실행속도, 매개변수 결정의 용이성, 잡영이 적은 정도를 평가기준으로 선정한 후, 정량적인 평가가 어려운 항목에 대해서는 9개의 등급으로 나누어 이진화 된 영상의 특성을 분석, 평가하였다.

Personalized TV Program Recommendation in VOD Service Platform Using Collaborative Filtering (VOD 서비스 플랫폼에서 협력 필터링을 이용한 TV 프로그램 개인화 추천)

  • Han, Sunghee;Oh, Yeonhee;Kim, Hee Jung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.88-97
    • /
    • 2013
  • Collaborative filtering(CF) for the personalized recommendation is a successful and popular method in recommender systems. But the mainly researched and implemented cases focus on dealing with independent items with explicit feedback by users. For the domain of TV program recommendation in VOD service platform, we need to consider the unique characteristic and constraints of the domain. In this paper, we studied on the way to convert the viewing history of each TV program episodes to the TV program preference by considering the series structure of TV program. The former is implicit for personalized preference, but the latter tells quite explicitly about the persistent preference. Collaborative filtering is done by the unit of series while data gathering and final recommendation is done by the unit of episodes. As a result, we modified CF to make it more suitable for the domain of TV program VOD recommendation. Our experimental study shows that it is more precise in performance, yet more compact in calculation compared to the plain CF approaches. It can be combined with other existing CF techniques as an algorithm module.

Efficient Bloom Filter Based Destination Address Monitoring Scheme for DDoS Attack Detection (DDoS 공격 탐지를 위한 확장된 블룸 필터 기반의 효율적인 목적지 주소 모니터링 기법)

  • Yoo, Kyoung-Min;Sim, Sang-Heon;Han, Kyeong-Eun;So, Won-Ho;Kim, Young-Sun;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.152-158
    • /
    • 2008
  • Recently, DDoS (Distributed Denial of Service) attack has emerged as one of the major threats and it's main characteristic is to send flood of data packets toward a specific victim. Thus, several attack detection schemes which monitor the destination IP address of packets have been suggested. The existing Bloom Filter based attack detection scheme is simple and can support real-time monitoring. However, since this scheme monitors the separate fields of destination IP address independently, wrong detection is comparatively high. In this paper, in order to solve this drawback, an efficient Bloom Filter based destination address monitoring scheme is proposed, which monitors not only separate fields but also relationship among separate fields. In the results of simulation, the proposed monitoring scheme outperforms the existing Bloom Filter based detection scheme. Also, to improve the correctness of detection, multi-layerd structure is proposed and the correctness of result is improved according to the number of layers and extra tables.

Improving Classification Performance for Data with Numeric and Categorical Attributes Using Feature Wrapping (특징 래핑을 통한 숫자형 특징과 범주형 특징이 혼합된 데이터의 클래스 분류 성능 향상 기법)

  • Lee, Jae-Sung;Kim, Dae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1024-1027
    • /
    • 2009
  • In this letter, we evaluate the classification performance of mixed numeric and categorical data for comparing the efficiency of feature filtering and feature wrapping. Because the mixed data is composed of numeric and categorical features, the feature selection method was applied to data set after discretizing the numeric features in the given data set. In this study, we choose the feature subset for improving the classification performance of the data set after preprocessing. The experimental result of comparing the classification performance show that the feature wrapping method is more reliable than feature filtering method in the aspect of classification accuracy.

Keyword Filtering about Disaster and the Method of Detecting Area in Detecting Real-Time Event Using Twitter (트위터를 활용한 실시간 이벤트 탐지에서의 재난 키워드 필터링과 지명 검출 기법)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.345-350
    • /
    • 2016
  • This research suggests the keyword filtering about disaster and the method of detecting area in real-time event detecting system by analyzing contents of twitter. The diffusion of smart-mobile has lead to a fast spread of SNS and nowadays, various researches based on studying SNS are being processed. Among SNS, the twitter has a characteristic of fast diffusion since it is written in 140 words of short paragraph. Therefore, the tweets that are written by twitter users are able to perform a role of sensor. By using these features the research has been constructed which detects the events that have been occurred. However, people became reluctant to open their information of location because it is reported that private information leakage are increasing. Also, problems associated with accuracy are occurred in process of analyzing the tweet contents that do not follow the spelling rule. Therefore, additional designing keyword filtering and the method of area detection on detecting real-time event process were required in order to develop the accuracy. This research suggests the method of keyword filtering about disaster and two methods of detecting area. One is the method of removing area noise which removes the noise that occurred in the local name words. And the other one is the method of determinating the area which confirms local name words by using landmarks. By applying the method of keyword filtering about disaster and two methods of detecting area, the accuracy has improved. It has improved 49% to 78% by using the method of removing area noise and the other accuracy has improved 49% to 89% by using the method of determinating the area.

A Recommender System using Case-based Reasoning with Implicit Rating Information (묵시적 평가정보를 이용한 사례기반추론 추천시스템)

  • 김병찬;옥수호;우용태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.139-141
    • /
    • 2002
  • 본 논문에서는 인터넷 컨텐츠 사이트에서 개인별로 컨텐츠를 효과적으로 추천하기 위한 개인화 시스템모델을 제안하였다. 제안한 모델은 묵시적인 평가정보를 이용한 사례기반추론 기법으로서 협동적필터링 기법과 달리 유사집단의 평가정보를 이용하지 않고 개인별 속성에 대한 가중치와 속성 값을 이용하여 추천하는 기법이다. 이 기법은 각 사용자의 상품 추매 속성을 추천에 반영할 수 있는 장점이 있으며 사용자 프로파일을 이용하여 개인화된 추천이 가능하다. 제안한 기법이 Recall, Precision, F-measure의 평가 방법을 통해 실험한 결과 협동적필터링 기법 보다 모든 부분에서 더 좋은 결과가 나왔음을 볼 수 있다. 그러므로 제안 시스템이 유사 사용자의 평가정보를 이용한 협동적필터링 기법보다 효율적인 개인화 전략이 가능하다고 말 수 있다. 본 제안 모델을 이용하여 일대일 마케팅을 위한 eCRM 시스템 개발이 가능하리라 예상된다.

  • PDF

A Study on Collaborative Filtering Recommendation Algorithm base on Hadoop and Spark (하둡 및 스파크 기반의 협력 필터링 추천 알고리즘 연구)

  • Jung, Young Gyo;Kim, Sang Young;Lee, Jung-June;Youn, Hee Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.81-82
    • /
    • 2016
  • 최근 사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해주는 추천 시스템은 협력 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천 시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 협력 필터링 알고리즘을 클러스터링 기반으로 분산 환경에서 구현하여, 추천의 효과를 최적화 하는 기법을 제안하며 하둡 및 스파크 기반으로 시스템을 구성하여 협력 필터링 추천 알고리즘을 비교 하였다.

  • PDF

Spam Mail Filtering System using Ontology and Semantic Enrichment (온톨로지와 Semantic Enrichment를 이용한 스팸 메일 필터링 시스템)

  • 김현준;김흥남;정재은;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.553-555
    • /
    • 2004
  • 최근 인터넷의 급속한 성장과 더불어 전자메일(I-Mail)은 의사교환의 필수적인 매체로 사용 되어지고 있다. 그러나 편리하고 비용이 들지 앉는 장정을 이용해 엄청난 양의 스맴 메일이 매일같이 솎아져 오고, 이를 해결하기 위한 다양한 연구들이 제시되어져 왔다. 특히. 문서 분류에 널리 쓰이는 베이지안 분류자(Bayesian classifier)가 가장 널리 이용되어지고 있는데, 정확도와 재현율에서 비교적 우수한 성능을 보이고 있다. 그러나 몇 가지 문제점을 갖고 있는데, 첫째, 사전에 사용자에 의해 스팸. 논스팸 메일에 대한 충분한 학습이 선행되어야 하는 정, 둘째, 필터링을 위한 연산시간이 소요되는 점, 셋째, 필터링의 대상이 되는 메일 본문의 내용이 적을 경우 정확한 필터링이 어렵다는 정 등의 문제점이 있다. 본 논문에서는 마지막 문제점으로 지적된 메일 본문의 내용이 적을 경우 즉, 연산을 위한 특징적인 단어들의 부족으로 정확한 분류가 불가능한 경우의 해결방안으로 온틀로지와 Semantic Enrichment 기법을 이용한 스팸 메일 필터링 시스템을 제안한다. 실험 결과, 제안하는 시스템이 베이지안 분류자를 이용한 분류 시스템보다 정확도에서 4.1%, 재현율에서 10.5%. 그리고 F-measure에서 7.64%의 성능향상을 보였다.

  • PDF