• Title/Summary/Keyword: 필렛용접이음

Search Result 22, Processing Time 0.027 seconds

Prevention of Fatigue Failure at Root Region in the Fillet Welded Joint of Steel Bridge (강교량 필렛용접이음부의 루트부 피로파괴 방지)

  • Lim, Cheong Kweon;Park, Moon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.231-238
    • /
    • 2000
  • There was extreme improvement in the processing result of weld toe, but there is possibility that the fatigue failure occurs from the weld root part where the fatigue strength became low relatively. This study did the fatigue test at the cross rib specimens which implemented a partial penetration weld to improve the fatigue strength of the weld root part. As a result of the fatigue test of the partial penetration weld and the fillet weld specimens, almost the same fatigue strength appeared. Because the fatigue failure began from toe, there was not a reinforcement effect in the weld root part by the partial penetration weld. So, it examined fatigue strength at the partial penetration welding specimens which processed toe to stop the fatigue failure of toe part. As a result, there was big fatigue strength improvement from the partial penetration weld than the fillet weld. Therefore, if fatigue crack occurrence can be restrained from toe, it thinks that the fatigue strength of the root part can improve by the partial penetration weld, after all, it thinks that the overall fatigue life can improve.

  • PDF

A study on welding connection's fatigue analysis through numerical and experimental approaches (용접이음부의 피로강도 해석을 위한 수치해석과 실험과의 비교연구)

  • 조규남;하우일
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.113-123
    • /
    • 1993
  • Most of the ship structures and offshore structures are constructed through the welding and they are always subjected to variable loads. In this study, fatigue and stress concentration of the various types of welding connections due to the variable loads are investigated by using numerical approach, and comparisons between numerical analysis and experiments are performed. Fillet weld, full penetration weld and partial penetration weld characteristics are studied by using parameters such as penetration length, welding leg length, size and penetration angle. Based on this study, it is suggested that the fillet welding can be replaced with the penetration welding in some cases. The results of this study can be used as guidelines for actual welding problems in the shipyards.

  • PDF

A Study on Stress Concentration Factor at Fillet Welded Joint (필렛용접이음부의 응력집중계수에 관한 연구)

  • S.W. Kang;W.I. Ha;J.S. Shin;J.S. Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.1-7
    • /
    • 1996
  • The stress concentration factor gives the significant effect the fatigue strength of welded joints. The model used herein is the type of the load carrying fillet welded cruciform joint with full or partial penetration. In order to obtain the stress concentration factor at the weld toe of fillet joint, the reasonable element size of the toe part is investigated and the stress analysis for the series models by FEM under tensile load is performed. On the basis of the calculation results, the estimated formulae for the stress concentration factor(Kt) at weld toe part of the fillet welded joint, which the effect of toe radius, flank angle and other parameters are taken into account, is derived.

  • PDF

A Study on the Accuracy Control of Panel Blocks (평블록의 용접변형제어에 관한 연구)

  • 이주성
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • This paper is concerned with the simulator's ability to estimate deformation due to welding of panel blocks. An efficient computer program system has been developed which can be applied both to estimation of weld-induced deformation, under the given welding conditions, and to reflection of effect when methods for deformation control of are applied. This paper briefly describes the background of the present simulator and shows some results applying the simulator to the estimation of weld-induced deformation. In addition, the results when methods for deformation control are applied are also included.

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF

Applicability of Hammer-Peening Treatment for Fatigue Life Improvement of Fatigue Damaged Weld Joints (피로손상된 용접이음의 피로수명 향상을 위한 햄머피닝 처리법의 적용)

  • Kim, In Tae;Park, Min Ho;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.48-55
    • /
    • 2013
  • In this study, fatigue tests were performed on longitudinal out-of-plane gusset fillet welded joints and transverse non-load-carrying cruciform rib fillet welded joints, and then applicability of hammer-peening treatment on improvement of fatigue life for fatigue damaged weld joints were investigated. Fatigue tests were carried out on three types of gusset and rib welded specimens: as-welded specimens, post-weld hammer peened specimens and hammer peened specimens at 50% of as-welded specimen's fatigue life. Before and after hammer peening treatment, the geometry of weld toes and surface stresses near weld toes were measured. As a result of hammer peening treatment, compressive residual stresses of 30-83MPa were introduced near weld toes of the gusset and rib welded joints, and 130% increase in fatigue life and fatigue limit of the welded joints could be realized by hammer peening treatment at 50% fatigue life of as-welded conditions.

Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint (용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

A study on weld distortion in butt and fillet welds of a steel plate by flux cored arc welding (플럭스코어드 용접으로 맞대기 및 필렛 용접된 판의 용접변형)

  • 안성철;유순영;조성택
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.22-29
    • /
    • 1989
  • In this paper weld distortion both in butt and fillet welds by flux cored arc welding has been investigated by changing welding parameters such as heat input and plate thickness, and the weld distortion was expressed as a function of welding parameters adopting the inherent strain theory as proposed by Watanabe and Satoh in 1961. As results of the research it is proposed that transverse shrinkage in root pass butt welds in proportional to ln[(Q/t_-tan.theta.] where Q is heat input(cal/mm), t is plate thickness(mm), and 2.theta. is groove angle(degree), and angular distortion .phi.(radian) in one pass of fillet welds has the following relationship: .phi..var.(Q/ $t^{1.5}$)$^{3}$exp[-(Q/ $t^{1.5}$ )$^{2}$3/] These equations provide us with basic tools to predict the amount of weld distortion in welded structures.

  • PDF

A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks (십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF