• Title/Summary/Keyword: 필라멘트 와인딩구조

Search Result 56, Processing Time 0.025 seconds

Development of the Hybrid CFFT Pile (FRP-콘크리트 합성말뚝의 개발)

  • Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, new type CFFT (Concrete Filled FRP Tube) was suggested in order to improve the flexural stiffness. Since the existing CFFT was produced by filament winding process, re-bar for concrete may be necessary in order to ensure structural safety under flexure re-bar. In comparison with existing type CFFT, new type CFFT was reinforced by circular shaped pultrusion FRP without re-bar. Filament winding FRP was attached to the outer layer of pultrusion FRP. Structural behavior of new type CFFT filled with concrete (HCFFT) was investigated by the mechanical property test for the component element and the FE analysis. Furthermore, compressive strength of the HCFFT member based on the equation suggested in previous studies.

  • PDF

A Study on Design of Type IV Hydrogen Pressure Vessels with Filament Winding Method (필라멘트 와인딩 공법을 적용한 타입 IV 수소 압력용기 설계 연구)

  • Sungjin Ahn;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.127-132
    • /
    • 2023
  • In this study, designing of a Type 4 pressure vessel using the filament winding method was conducted. In order to prevent leakage in consideration of the design of the hydrogen storage tank, a liner was designed by applying high-density polyethylene (HDPE), and the composite structure was designed by stacking carbon/epoxy in the hoop and helical directions. As a theoretical approach, the angle of the helical fiber and fiber thickness of each hoop and helix were designed. The safety of the design was verified using the commercial software ANSYS.

KSR-III 복합재 가압탱크의 설계 및 제작

  • Kong, Cheol-Won;Yoon, Chong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.124-132
    • /
    • 2003
  • This paper described the structural design and the fabrication procedure of KSR-III composite pressure tank. The type of the composite pressure tank was COPV(Composite Overwrapped Pressure Vessel). A non-load sharing liner was made of aluminum 6061-0 and the liner provided a helium gas seal. The composite pressure tank was winded using T700 carbon/epoxy on the liner. Because the aluminum liner was thin, multiple cure cycles were applied to the filament winding technique. The multiple cure cycles prevented the liner-cylinder from losing a circular shape. A fitting force at the metallic boss was spread to the carbon fiber by a boss ring. The boss ring also prevented a local deformation at the boss part.

  • PDF

Internal Strain Monitoring of Filament Wound Pressure Tanks using Embedded Fiber Bragg Grating Sensors (삽입된 광섬유 브래그 격자 센서를 이용한 필라멘트 와인딩된 복합재료 압력탱크의 내부 변형률 모니터링)

  • Kim C. U.;Park S. W.;Kim C. G.;Kang D. H.
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • In-situ structural health monitoring of filament wound pressure tanks were conducted during water-pressurizing test using embedded fiber Bragg grating (FBG) sensors. We need to monitor inner strains during working in order to verify the health condition of pressure tanks more accurately because finite element analyses on filament wound pressure tanks usually show large differences between inner and outer strains. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. We fabricated a standard testing and evaluation bottle (STEB) with embedded FBG sensors and performed a water-pressurizing test. In order to increase the survivability of embedded FBG sensors, we suggested a revised fabrication process for embedding FBG sensors into a filament wound pressure tank, which includes a new protecting technique of sensor heads, the grating parts. From the experimental results, it was demonstrated that FBG sensors can be successfully adapted to filament wound pressure tanks for their structural health monitoring by embedding.

A Study on the Optimum Evaluation Method for Tensile NOL Ring Specimen Manufactured by Filament Winding Process (Filament Winding에 의해 제조된 복합재료 NOL Ring시험편의 최적 인장강도 평가법에 관한 연구)

  • 김윤해;권술철;임철문
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2001
  • Filament Winding Process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. It is well established and versatile method for storage tanks and pipes for the chemical and other industries. In this study, tensile strength of a filament wound ring specimens were evaluated by a split disk test fixture and a dress disk test fixture. The results obtained from experiments were compared with the theoretical values from the rule of mixtures. The purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures. The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than those tested by the split disk test because of higher stress concentration in edges of a split disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

Analysis of filament Wounded Composite Rocket Motor (필라멘트 와인딩 복합재료 연소관의 구조적 안정성 연구)

  • Lee Yoon-kyu;Kwon Tae-hoon;Lee Won-bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.278-281
    • /
    • 2004
  • The purpose of this paper is to show a reliable analytical method to predict the deflections of F/W Composite Motor Case. Structural analysis and testing of a Carbon/Epoxy Composites Motor Case for Pressure Loadings were performed. This paper presents the development of 3-D layered axi-symmetric solid element for finite element analysis. Finite element analyses were preformed considering fiber angle variation in longitudinal and thickness direction by ANSYS. The analytical results agree well with experimental results.

  • PDF

Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior (CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가)

  • Choi, Ji-Su;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.174-179
    • /
    • 2021
  • Currently, fluid transfer steel pipes take a lot of time and expense to maintain all facilities due to new construction and painting or corrosion and aging. Therefore, this study was conducted for designing a CFRP pipe structure with high corrosion resistance and chemical resistance as a substitute for steel pipes. The helical/hoop pattern was cross-laminated to improve durability, and HNT was added to suppress the moisture absorption phenomenon of the epoxy. The HNT/CFRP pipe was manufactured by a filament winding process, and performed a mechanical property test, and a moisture absorption test in distilled water at 70℃. As a result, the highest bending strength was obtained when the hoop pattern was laminated with a thickness equivalent to 0.6% of the pipe. The 0.5 wt% HNT specimen had the highest moisture absorption resistance. Also, the delamination phenomenon at the interlayer interface was delayed, resulting in the lowest strength reduction rate.

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

A Study on the Optimal Design of Laminate for CNG composite vessel using ANSYS RSM (ANSYS RSM을 이용한 CNG차량 용기 필라멘트 와인딩 적층판 최적설계에 관한 연구)

  • Kim, Eui-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.15-21
    • /
    • 2009
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material have two main merits which are to cut down energy by reducing weight and to have long-term life due to corrosion resistance. In this paper, we developed optimal design module of laminate for CNG composite pressure vessel winding E-glass/epoxy based on Von-Mises yield criterion, Tsai-Hill theory and stress ratio using finite element method and ANSYS RSM(Response Surface Method).

  • PDF