• Title/Summary/Keyword: 필라멘트

Search Result 436, Processing Time 0.03 seconds

삼중탐침과 단일탐침에 의한 RF, DC, RF+DC 플라즈마의 특성비교

  • 최용섭;정규선;장두희;심연근;김진희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.675-680
    • /
    • 1996
  • 필라멘트 직류 가열 방식에 의한 DC 플라즈마, Capacitive RF 플라즈마, 그리고 DC+RF 혼성 플라즈마를 발생시켜서, 삼중탐침과 단일탐침으로 측정비교하여 다음과 같은 결과를 얻었다. 또한 두 개의 온도분포가 존재할 때 단일 탐침과 삼중탐침을 비교하여 삼중탐침이 energetic electron 포집함을 알 수 있었다.

  • PDF

Dynamic Characteristics Analysis of Filament-wound Composite Towers for Large Scale Offshore Wind-Turbine (대형 해상풍력발전용 필라멘트 와인딩 복합재 타워의 동적 특성에 관한 연구)

  • Han, Jeong-Young;Hong, Cheol-Hyun;Jeong, Jae-Hun;Moon, Byong-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • The purpose of this study is to investigate the buckling load of filament-wound composite towers for large scale wind-turbine using finite element method(FEM). To define material properties, we used both the effective property method and the stacking properties method. The effective properties method is to assume that composite consists of one ply. The stacking properties method is to assume that composite consists of some stacked plies. First, linear buckling analysis of the tower, filament-wounded with angles of [${\pm}30$] was carried out by two methods for composite material properties, the stacking method and the effective method. and FE analysis was performed for the composite towers according to filament winding angles of [${\pm}30$], [${\pm}45$], [${\pm}60$]. FE analysis results using the stacking properties of the composite were in good agreement with the results by the effective properties. The difference between FEM results by material properties methods was approximately 0~2.3% in buckling Analysis and approximately 0~0.6% in modal analysis. And above the angle of [${\pm}60$], there was a little change of buckling load.

Modal Analysis of Filament-wound Composite Towers for Large Scale Wind-Turbine (대형 풍력 발전용 필라멘트 와인딩 복합재 타워의 고유 진동수 해석에 관한 연구)

  • Hong, Gheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • The purpose of this study was to investigate the natural frequency of filament-wound composite towers for large scale wind-turbines using the finite element method (FEM). To define the material properties, we used both the effective property method and the stacking properties method. The effective properties method assumes that a composite consists of one ply. The stacking properties method assumes that a composite consists of several stacked plies. First, a modal analysis of the tower, filament-wound with angles of $[{\pm}30]$, was carried out using the two methods for composite material properties, the stacking method and effective method. Then, an FE analysis was performed for composite towers using filament winding angles of $[{\pm}30]$, $[{\pm}45]$, and $[{\pm}60]$. The FE analysis results using the stacking properties of the composite were in good agreement with the results from the effective properties method. The difference between the FEM and material properties methods was approximately 0~0.6%

Buckling Analysis of Filament-wound Composite Towers for Large Scale Wind-Turbine (대형 풍력발전용 필라멘트 와인딩 복합재 타워의 좌굴 해석)

  • Han, Jeong-Young;Hong, Cheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • The purpose of this study was to investigate the buckling load of filament-wound composite towers for large scale wind-turbines using the finite element method (FEM). To define the material properties, we used both the effective property method and stacking properties method. The effective properties method assumes that a composite consists of one ply. The stacking properties method assumes that a composite consists of several stacked plies. First, a linear buckling analysis of the tower, filament-wound with angles of $[{\pm}60]$, was carried out using the two methods for composite material properties: the stacking method and effective method. An FE analysis was also performed for the composite towers using the filament winding angles of $[{\pm}30]$, $[{\pm}45]$, and $[{\pm}60]$. The FE analysis results using the stacking properties of the composite were in good agreement with the results from the effective properties method. The difference between the FEM results and material properties method was approximately 0~2.3%. Above the angle of $[{\pm}60]$, there was little change in the buckling load.