• Title/Summary/Keyword: 필기 인식

Search Result 314, Processing Time 0.025 seconds

A Hangul Script Matching Algorithm for PDA (PDA상에서의 한글 필기체 매칭 알고리즘)

  • Cho, Mi-Gyung;Cho, Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.10
    • /
    • pp.684-693
    • /
    • 2002
  • Electronic Ink is a stored data in the form of the handwritten text or the script without converting it into ASCII by handwritten recognition on the pen-based computers and Personal Digital Assistants(PDAs) for supporting natural and convenient data input. One of the most Important issue is to search the electronic ink in order to use it. We proposed and implemented a script matching algorithm for the electronic ink. Proposed matching algorithm separated the input stroke into a set of primitive stroke using the curvature of the stroke curve. After determining the type of separated strokes, it produced a stroke feature vector. And then it calculated the distance between the stroke feature vector of input strokes and one of strokes in the database using the dynamic programming technique. We did various experiments and our algorithm showed high matching rate over 97.7% for only the Korean script and 94% for the data mixed Korean with the Chinese character.

A Study on Handwritten Digit Categorization of RAM-based Neural Network (RAM 기반 신경망을 이용한 필기체 숫자 분류 연구)

  • Park, Sang-Moo;Kang, Man-Mo;Eom, Seong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • A RAM-based neural network is a weightless neural network based on binary neural network(BNN) which is efficient neural network with a one-shot learning. RAM-based neural network has multiful information bits and store counts of training in BNN. Supervised learning based on the RAM-based neural network has the excellent performance in pattern recognition but in pattern categorization with unsupervised learning as unsuitable. In this paper, we propose a unsupervised learning algorithm in the RAM-based neural network to perform pattern categorization. By the proposed unsupervised learning algorithm, RAM-based neural network create categories depending on the input pattern by itself. Therefore, RAM-based neural network for supervised learning and unsupervised learning should proof of all possible complex models. The training data for experiments provided by the MNIST offline handwritten digits which is consist of 0 to 9 multi-pattern.

Improvement of Classification Rate of Handwritten Digits by Combining Multiple Dynamic Topology-Preserving Self-Organizing Maps (다중 동적 위상보존 자기구성 지도의 결합을 통한 필기숫자 데이타의 분류율 향상)

  • Kim, Hyun-Don;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.12
    • /
    • pp.875-884
    • /
    • 2001
  • Although the self organizing map (SOM) is widely utilized in such fields of data visualization and topology preserving mapping, since it should have the topology fixed before trained, it has some shortcomings that it is difficult to apply it to practical problems, and classification capability is quite low despite better clustering performance. To overcome these points this paper proposes the dynamic topology preserving self-organizing map(DTSOM) that dynamically splits the output nodes on the map and trains them, and attempts to improve the classification capability by combining multiple DTSOMs K-Winner method has been applied to combine DTSOMs which produces K outputs with winner node selection method. This produces even better performance than the conventional combining methods such as majority voting weighting, BKS Bayesian, Borda, Condorect and reliability sum. DTSOM remedies the shortcoming of determining the topology in advance, and the classification rate increases significantly by combing multiple maps trained with different features. Experimental results with handwritten digit recognition indicate that the proposed method works out to problems of conventional SOM effectively so to improve the classification rate to 98.1%.

  • PDF

A Study of Undergraduate Students' Satisfaction and Dissatisfaction Factors with the Learning Media: Focusing on Tablet PCs and Digital Pens (대학생들의 학습 매체에 대한 만족 및 불만족 요인에 관한 연구: 태블릿PC와 디지털 펜을 중심으로)

  • Junyeong Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.389-400
    • /
    • 2023
  • Technological advancements in the field of information and communication have led to the advent and usage of various types of smart devices, which have significantly altered people's usage behaviors and environments. This change has also been applied to the learning environment, where various smart devices are appearing and the learning behavior of learners is changing accordingly. In this study, we investigate learners' perceptions of digital note-taking behaviors focusing on the recently emerged learning media, tablet PCs and digital pens. Drawing upon the expectancy-confirmation model, we conduct a study on the factors affecting the (dis)confirmation and (dis)satisfaction of undergraduate students with tablet PCs and digital pens by comparing their expectations with their actual use experiences. An open-ended survey was conducted among students at C University in Korea, and the responses were analyzed through qualitative content analysis to derive four factors of expectation-confirmation and satisfaction and three factors of expectation-disconfirmation and dissatisfaction. Based on these findings, we provide academic and educational implications.

Comparisons of Linear Feature Extraction Methods (선형적 특징추출 방법의 특성 비교)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, feature extraction methods, which is one field of reducing dimensions of high-dimensional data, are empirically investigated. We selected the traditional PCA(Principal Component Analysis), ICA(Independent Component Analysis), NMF(Non-negative Matrix Factorization), and sNMF(Sparse NMF) for comparisons. ICA has a similar feature with the simple cell of V1. NMF implemented a "parts-based representation in the brain" and sNMF is a improved version of NMF. In order to visually investigate the extracted features, handwritten digits are handled. Also, the extracted features are used to train multi-layer perceptrons for recognition test. The characteristic of each feature extraction method will be useful when applying feature extraction methods to many real-world problems.

A Study on the Design of OMCR(Optical Mark and Character Reader) System based on Image Processing (영상처리방식에 의한 OMCR 시스템 설계에 관한 연구)

  • 이기돈;김우성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1358-1367
    • /
    • 1993
  • In this paper, OMR system based on image processing is developed which improve the performance of conventional OMR system based on line-scan method. Based on this OMR system, real-time OCR system which recognizes alphanumerics is also developed. We propose the OMCR system which recognize the mark and numerals at the same time. Besides, we improve the input system using constrained 7-segment type handwritten numeral instead of mark to solve the problem caused by miswriting the mark. In summary, we verified the reai-time recognition performance of developed OMCR system using application form for admission, answer sheet for college entrance examination and receipt sheet.

  • PDF

A New Hidden Error Function for Training of Multilayer Perceptrons (다층 퍼셉트론의 층별 학습 가속을 위한 중간층 오차 함수)

  • Oh Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.57-64
    • /
    • 2005
  • LBL(Layer-By-Layer) algorithms have been proposed to accelerate the training speed of MLPs(Multilayer Perceptrons). In this LBL algorithms, each layer needs a error function for optimization. Especially, error function for hidden layer has a great effect to achieve good performance. In this sense, this paper proposes a new hidden layer error function for improving the performance of LBL algorithm for MLPs. The hidden layer error function is derived from the mean squared error of output layer. Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.

  • PDF

Unconstrained Handwritten Numeral Recognition using Multistage Combination of Multiple Recognizers (다중 인식기의 다단계 결합을 통한 무제약 필기숫자 인식)

  • 이관용;백종현;변혜란;이일병
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.93-93
    • /
    • 1999
  • Researches on digit recognition have been conducted actively for a long time because the classes to recognize are much fewer than other character sets and because it is very likely thatthe digit recognition can be applied to many problems in real world, The recent studies on designingrecognition system with high performance are in progress with two different aspects. One is toconstruct a recognizer using several features at the same time, and the other is to use severalrecognizers. In this paper, we propose a multistage combination method to recognize the unconstrainedhandwritten numerals. The method is a two-stage combination method which uses multiplecombination methods at the same time unlike the existing methods with only one combination method.The recognizers are first combined by several combination methods of different classes simultaneously,and then the results of them are combined by another combination method to generate a final result.Five recognizers and eight combination methods are used in the proposed system. The experimentalresults showed that the recognition rates on CENPARMI and CEDAR data were 97.75% and 98.6%,respectively and the recognition performance could be improved as the process passed through stages,We could get the best performance by combining the combination methods of different classes, whichmeans there are a complementary relation among them, The proposed method can be considered asan extended version of the existing combination methods.

Pattern Classification Based on the Selective Perception Ability of Human Beings (인간 시각의 선택적 지각 능력에 기반한 패턴 분류)

  • Kim Do-Hyeon;Kim Kwang-Baek;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.398-405
    • /
    • 2006
  • We propose a pattern classification model using a selective perception ability of human beings. Generally, human beings recognize an object by putting a selective concentration on it in the region of interest. Much better classification and recognition could be possible by adapting this phenomenon in pattern classification. First, the pattern classification model creates some reference cluster patterns in a usual way. Then it generates an SPM(Selective Perception Map) that reflects the mutual relation of the reference cluster patterns. In the recognition phase, the model applies the SPM as a weight for calculating the distance between an input pattern and the reference patterns. Our experiments show that the proposed classifier with the SPM acquired the better results than other approaches in pattern classification.

Recognition of Printed and Handwritten Numerals Using Multiple Features and Modularized Neural Networks (다중 특징과 모듈화된 신경회로망을 이용한 인쇄 및 필기체 혼용 숫자 인식)

  • 류강수;김우태;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1347-1357
    • /
    • 1995
  • In this paper, we describe a modularized neuroclassifier for enhancing the recognition accuracy of mixed printed and handwritten numerals. This classifier combines four modularized subclassifiers using multi-layer perceptron module. The input of each subclassifier is comprised of a group of specialized feature sets. On applying this method to combining several subclassifiers for unconstrained handwritten numerals, the experimental result shows that the performance of individual subclassifier can be improved. In winner-take-all voting method, the result of subclassifier having the highest RF value is selected as the output. The generality of this classifier is tested with 1,080 printed and 3,000 handwritten numerals that was not shown in training the neural networks. Experimental results show 98.2% recognition rate. The typical recognition test with a threshold value(RF=1.5) has shown 97% recognition, 1% substitution and 2% rejection rates.

  • PDF