• Title/Summary/Keyword: 핀풀러

Search Result 3, Processing Time 0.023 seconds

Reliability Prediction of a Pin Puller (핀풀러 신뢰도 예측)

  • Lee, Hyo-Nam;Jang, Seung-Gyo;Oh, Jong-Yun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.625-631
    • /
    • 2013
  • Reliability of a pin puller was predicted by Monte Carlo simulation. The prediction method is based on the stress-strength interference model that failure occurs if the stress exceeds the strength. In this study, the strength is considered as the energy delivered by combustion of pyrotechnics to retreat the pin to a predetermined position, whereas the stress is regarded as the energy required to resist the pin movement. The former mainly depends on the amount of pyrotechnic charge and the latter is governed by several friction forces and the energy dissipation within locking mechanism. Both the variables of stress and strength were computed using an analytical performance model. The method presented here, not depending upon a large number of test item, can be applicable to predict the reliability of other kinds of pyrotechnic devices.

Functional Reliability Estimation of Pin Pullers Based on a Probit Model (프로빗 모델 기반 핀풀러의 작동 신뢰도 추정)

  • Mun, Byeong Min;Lee, Chinuk;Kim, Nam-ho;Choi, Chang-Sun;Kim, Zaeill;Bae, Suk Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.225-230
    • /
    • 2017
  • To generate mechanical movements in one-shot devices such as missiles and space launch vehicles, pyrotechnic mechanical device(PMD) such as pin pullers using pyrotechnic charge has been widely used. Reliability prediction of pin pullers is crucial to successfully execute target missions for the one-shot devices. Because the pin pullers require destructive tests to evaluate their reliability, one would need about 3,000 samples of success to guarantee a reliability of 99.9 % with a confidence level of 95 %. This paper suggests the application of a probit model using the charge amount as a functional parameter for estimation of functional reliability of pin puller. To guarantee target reliability, we propose estimation methods of the lower bound of functional reliability by applying the probit model. Given lower bound of functional reliability, we quantitatively show that the optimum amount of charge increases as the number of samples decreases. Along with a variety of simulations the validity of our new model via real test results is confirmed.

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.