• Title/Summary/Keyword: 피폭 방사선량

Search Result 491, Processing Time 0.029 seconds

원자력시설의 정상운영시 주민피폭선량평가 입력자료의 개선

  • 전제근;이관희
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.437-438
    • /
    • 2004
  • 원자력시설의 정상운영시 방사성물질이 기체 및 액체상의 형태로 소외로 배출되며, 일정기간별로 배출된 핵종별 총량을 이용하여 주민피폭선량 평가를 수행함으로써 규제요건의 준수 여부를 확인한다. 이러한 원자력시설 주변 주민피폭선량평가에 적용되고 있는 주요 입력자료인 음식물섭취자료 등은 1988년 원자력연구소의 현장조사, 실험, 문헌조사 등을 통하여 결정되었으나 시간이 지남에 따라 일부자료의 경우 최신경향을 반영할 수 있도록 개정이 요구된다.(중략)

  • PDF

Study on The Planning and Operation of Training Education in Radiologic Science for Reduced x-ray Exposure (방사선(학)과 실습교육에서 X선 피폭 감소를 위한 운영방법에 대한 연구)

  • Kil, Jong-Won;Park, Jung-Ho;Kim, Yong-Gwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.174-179
    • /
    • 2014
  • In this study, we measure the radiation dose for every experiments performed during the training education in radiologic science and estimate the radiation dose to each participant in the training education to propose a safe curriculum including operation of the training education. In this paper, we optimized the three parameters and the results show the dramatically reduced radiation dose to each participant. The proposed arrangement of the subjects and operation of the training education will be very helpful to reorganize the curriculum and the subject operation and will protect the students from the radiation dose.

The Plan of Dose Reduction by Measuring and Evaluating Occupationally Exposed Dose in vivo Tests of Nuclear Medicine (핵의학 체내검사 업무 단계 별 피폭선량 측정 및 분석을 통한 피폭선량 감소 방안)

  • Kil, Sang-Hyeong;Lim, Yeong-Hyeon;Park, Kwang-Youl;Jo, Kyung-Nam;Kim, Jung-Hun;Oh, Ji-Eun;Lee, Sang-Hyup;Lee, Su-Jung;Jun, Ji-Tak;Jung, Eui-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2010
  • Purpose: It is to find the way to minimize occupationally exposed dose for workers in vivo tests in each working stage within the range of the working environment which does not ruin the examination and the performance efficiency. Materials and Methods: The process of the nuclear tests in vivo using a radioactive isotope consists of radioisotope distribution, a radioisotope injection ($^{99m}Tc$, $^{18}F$-FDG), and scanning and guiding patients. Using a measuring instrument of RadEye-G10 gamma survey meter (Thermo SCIENTIFIC), the exposure doses in each working stage are measured and evaluated. Before the radioisotope injection the patients are explained about the examination and educated about matters that require attention. It is to reduce the meeting time with the patients. In addition, workers are also educated about the outside exposure and have to put on the protected devices. When the radioisotope is injected to the patients the exposure doses are measured due to whether they are in the protected devices or not. It is also measured due to whether there are the explanation about the examination and the education about matters that require attention or not. The total exposure dose is visualized into the graph in using Microsoft office excel 2007. The difference of this doses are analyzed by wilcoxon signed ranks test in using SPSS (statistical package for the social science) program 12.0. In this case of p<0.01, this study is reliable in the statistics. Results: It was reliable in the statistics that the exposure dose of injecting $^{99m}Tc$-DPD 20 mCi in wearing the protected devices showed 88% smaller than the dose of injecting it without the protected devices. However, it was not reliable in the statistics that the exposure dose of injecting $^{18}F$-FDG 10 mCi with wearing protected devices had 26% decrease than without them. Training before injecting $^{99m}Tc$-DPD 20 mCi to patient made the exposure dose drop to 63% comparing with training after the injection. The dose of training before injecting $^{18}F$-FDG 10 mCi had 52% less then the training after the injection. Both of them were reliable in the statistics. Conclusion: In the examination of using the radioisotope $^{99m}Tc$, wearing the protected devices are more effective to reduce the exposure dose than without wearing them. In the case of using $^{18}F$-FDG, reducing meeting time with patients is more effective to drop the exposure dose. Therefore if we try to protect workers from radioactivity according to each radioisotope characteristic it could be more effective and active radiation shield from radioactivity.

  • PDF

한국형 처분 시스템에 대한 생태계 평가의 한 예시

  • 이연명;황용수;강철형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.290-299
    • /
    • 2003
  • 고준위 방사성 폐기물 처분장으로부터 유출된 핵종이 인간 생태계에 도달하여 어느 정도의 선량률로서 피폭을 일으키는가를 보이기 위한 생태계 피폭 모델링 및 평가 연구는 처분안전성 평가의 최종 단계로서 핵종 유출의 결과가 인간에게 어느 정도의 방사선 피폭을 주는가를 보이는 것이 그 주요한 내용이 된다. 이 연구를 통하여 도출된 시나리오 중에서 가장 기본이 될 수 있는 생태계에 대하여 AMBER를 사용하여 피폭 계산을 수행하여 선량 환산 인자 평가를 계산해 보았다. AMBER 코드는 핵종 이동 계산을 위해 여러 개의 구획을 설정하고 구획간의 핵종 이동은 핵종 전이 계수(mass transfer coefficient)를 이용하여 계산한다.

  • PDF

Analysis of the Distributional Effects of Radioactive Materials on External Gamma Exposure (방사성물질의 분포특성에 따른 외부 감마피폭해석)

  • Han, Moon-Hee;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Choi, Young-Gil
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.211-218
    • /
    • 1998
  • The distributional effects of radioactive materials on external gamma exposure have been analyzed. An approximate method for estimating external gamma dose given from an arbitrary distribution of radioactive material has been developed. The minimum gamma exposure given from a point source is shown at 0.07 MeV if the source to receptor distance is shorter than 10 m. But if the receptor to point source distance is longer than 20 m, gamma exposure rate increases monotonously according to the average gamma energy. For the analysis of the effects of volume source, we estimated the gamma dose given from different size of hemisphere in which radioactive materials are distributed uniformly. When the radius of hemisphere is longer than 40 m, external gamma dose rate increases monotonously. The gamma dose rate given from the radioactive materials deposited on the ground shows the minimum value at 0.07 MeV in any case. The analysis shows that external gamma exposure is strongly dependent on the distribution of radioactive materials in the environment and gamma energy.

  • PDF

Caregiver or Family Doses due to Discharged $^{131}I$ Administrated Patient from the Hospital (고용량 $^{131}I$ 투여환자 퇴원이후 환자 간병인과 환자 가옥의 피폭선량 측정)

  • Jeong, Gyu-Hwan;Lee, Hyun-Kook;Cho, Woon-Kap;Lee, Jai-Ki
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.149-154
    • /
    • 2010
  • Exposed doses to the patient's caregiver and their house due to the 131I from patients discharged from the hospital were measured using OSL dosimeters. Usually, 3.37-5.55 GBq (100-150 mCi) of $^{131}I$ administrated patients are discharged from the hospital after 3 or 4 days of hospitalization in Korea. In addition, after 5 to 8 days, the accumulated doses of the patient's caregiver and house after hospitalization of the patient were measured using OSL dosimeters. The results of the measured average accumulated doses were 0.1 mSv, which is 10% of 1 mSv, the public dose limit in the Korean Atomic Energy Law. And it's standard deviation was 0.087 mSv. Based on the results of this study, we anticipate that we could assure the compliance of the regulation requirement 5 mSv of MEST (Ministry of Education, Science and Technology) Notice No. 2008-45 for the patient's caregiver or family, even if we reduce the 3-4 days of hospitalization to 1-2 days or less.