• Title/Summary/Keyword: 피폭 방사선량

Search Result 491, Processing Time 0.031 seconds

3차원 그래픽 시뮬레이션 기술을 이용한 원자력 발전소 폐기물 처리 작업 중 동선에 따른 방사선 피폭 변화

  • 박원만;김윤혁;김경수;황주호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.427-429
    • /
    • 2004
  • 본 연구에서는 국내 방사선 작업 종사자의 연간 피폭량 중 상당부분(30%)를 차지하는 원자력 발전소 작업 종사자의 방사선 피폭량을 3차원 그래픽 시뮬레이션 기술 및 Java 프로그래밍과 수치해석 방법을 이용하여, 보다 안전한 작업 계획 수립에 필요한 작업 동선에 따른 방사선 피폭변화에 대하여 연구하였다. 원자력 발전소의 방사성 폐기물 처리 시설에 대해 3차원 그래픽으로 모델링 작업을 수행하고, 가상공간에서 선원과 작업자와의 거리 및 시간에 따른 방사선 피폭량을 수치 해석적으로 계산하였다. 선원의 종류에 따른 특정감마선($\tau$상수)을 입력하여 가상 작업 시뮬레이션 동안의 피폭선량을 평가하였으며, 시간에 따른 가상 작업자의 위치와 이동거리, 방사선 피폭량 등의 결과데이터 파일을 이용하여 작업 결과를 분석하였다.

  • PDF

The Assessment and Reduction Plan of Radiation Exposure During Decommissioning of the Steam Generator in Kori Unit 1 (고리1호기 증기발생기 제염해체 시 작업자 피폭선량 평가 및 저감화 방안)

  • Son, Young Jik;Park, Sang June;Byon, Jihyang;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.377-387
    • /
    • 2018
  • Korea's first commercial nuclear power plant, Kori Unit 1, was permanently shut down on June 18, 2017, after 40 years of successful operation. Kori Unit 1 plans to construct a waste treatment facility in the turbine building prior to commencement of dismantling in earnest. Various radioactive wastes are decontaminated, disassembled, cut and melted in the waste treatment facility and sent to the radioactive waste repository. The proportion of metal radioactive waste in dismantled waste is about 70%, of which large metal radioactive waste is mainly generated in the primary circuit and has high radioactivity, so radiation exposure must be managed during disassembly. In this study, the steam generators are selected as large metal radioactive waste, the exposure doses of the dismantling workers are calculated using RESRAD-RECYCLE code and the methods for reducing the exposure doses are suggested.

The Assessment of Exposure Dose of Radiation Workers for Decommissioning Waste in the Radioactive Waste Inspection Building of Low and Intermediate-Level Radioactive Waste Disposal Facility (경주 중·저준위방사성폐기물 처분시설의 방폐물검사건물에서 해체 방사성폐기물 대상 방사선작업종사자의 피폭선량 평가 및 작업조건 도출)

  • Kim, Rin-Ah;Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.317-325
    • /
    • 2020
  • The Korea Radioactive Waste Agency plans to expand the storage capacity of radioactive waste by constructing a radioactive waste inspecting building to solve the problem of the lack of inspection space and drum-handling space in the radioactive waste receipt and storage building for the first-stage disposal facility. In this study, the exposure doses of radiation workers that handle new disposal containers for decommissioning waste in the storage areas of the radioactive waste inspecting building were calculated using the Monte Carlo N-particle transport code. The annual collective dose was calculated as a total of 84.8 man-mSv for 304 new disposal containers and an estimated annual 306 working hours for the radiation work. When the 304 new disposal containers (small/medium type) were stored in the storage areas, it was found that 25 radiation workers should be involved in acceptance/disposal inspection, and the estimated exposure dose per worker was calculated as an average annual value of 3.39 mSv. When the radiation workers handle the small containers in high-radiation dose areas, the small containers should be shielded further by increasing the concrete liner thickness to improve the work efficiency and radiation safety of the radiation workers. The results of this study will be useful in establishing the optimal radiation working conditions for radiation workers using the source term and characteristics of decommissioning waste based on actual measurements.

Radiation Dose Measurement of D-Shuttle Dosimeter for Radiation Exposure Management System (방사선피폭관리시스템를 위한 D-Shuttle 선량계의 방사선 선량측정)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.321-328
    • /
    • 2017
  • The purpose of the study is to provide basic data for the management of individual exposure and the monitoring of natural radiation dose using D-Shuttle dosimeter (Chiyoda Technol Corporation, Tokyo, Japan). The dose was calculated using D-Shuttle dosimeter. The dose was 1.346 mSv when exposed for 400 days, the annual dose per year was 1.228 mSv/year and the average dose per hour was $0.014{\mu}Sv/hr$. Domestic individual external dose (1.295 mSv/year = Korea average natural individual external dose) and domestic additional dose per year is -0.0663 mSv/year. D-Shuttle is a personal dosimeter for radiation monitoring. It can be used as a very useful dosimeter for ALARA because of its excellent detection capability of radiation, real-time radiation exposure management, alarm function of radiation work, and efficient and easy to use personal radiation dose management.. Radiation monitoring equipment for radiation workers and local residents can be used for radiation monitoring in hospitals, industry, medical sites, nuclear accident areas and hazardous areas in non-destructive areas.

Radiation Exposure Dose on Persons Engaged in Radiation-related Industries in Korea (한국에서 방사선 관련 종사자들의 개인피폭선량 실태에 관한 연구)

  • Lim, Bong-Sik
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.185-195
    • /
    • 2006
  • Purpose: This study investigated the status of radiation exposure doses since the establishment of the "Regulations on Safety Management of Diagnostic Radiation Generation Device" in January 6, 1995. Method: The level of radiation exposure in people engaged or having been engaged in radiation-related industries of inspection organizations, educational organizations, military units, hospitals, public health centers, businesses, research organizations or clinics over a 5 year period from Jan. 1, 2000 to Dec. 31, 2004 was measured. The 149,205 measurement data of 57,136 workers registered in a measurement organization were analysed in this study. Frequency analysis, a Chi-square test, Chi-square trend test, and ANOVA was used for data analysis. Results: Among 57,136, men were 40,870(71.5%). 50.3% of them were radiologic technologists, otherwise medical doctors(22.7%), nurse(2.9%) and others(24.1%). The average of depth radiation and surface radiation during the 5-year period were found to decrease each year. Both the depth radiation and surface radiation exposure were significantly higher in males, in older age groups, in radiological technologists of occupation. The departments of nuclear medicine had the highest exposure of both depth and surface radiation of the divisions of labor. There were 1.98 and 2.57 per 1,000 person-year were exposed more than 20 mSv(limit recommended by International Commission on Radiological Protection) in depth and surface radiation consequently. Conclusion: The total exposure per worker was siginifcantly decreased by year. But Careful awareness is needed for the workers who exposed over 20 mSv per year. In order to minimize exposure to radiation, each person engaged in a radiation-related industry must adhere to the individual safety management guidelines more thoroughly. In addition, systematic education and continuous guidance aimed at increasing the awareness of safety must be provided.

  • PDF

A Calculation of Effective Dose Equivalent from Data of Environmental Monitoring around the Karlsruhe Nuclear Research Center (Karlsruhe 원자력연구소 주변의 환경방사능 측정자료로부터 실효선량당량계산)

  • Lee, Chang-Woo;Lee, Jeong-Ho;Wicke, A.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.75-85
    • /
    • 1990
  • The dose calculations were carried out using environmental montoring data around Karlsruhe Nuclear Research Center(KfK). Ingestion of plant foods was the most important pathway, and the K-40 and Pb-210 natural radioisotopes in food were the most effective radiation source to man. The dose received from artificial nuclides were mostly emitted by gamma irradiation of Cs-134 and Cs-137 deposited on the ground. The effective dose equivalent in the KfK environment was far less than the dose equivalent limit recommended by ICRP.

  • PDF

Performance Analysis of Electronic Personal Dosimeter(EPD) for External Radiation Dosimetry (전자개인선량계(EPD)의 외부피폭방사선량 평가 성능분석)

  • Lee, Byoung-Il;Kim, Taejin;Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.261-266
    • /
    • 2015
  • As performance of electronic personal dosimeter (EPD) used for auxiliary personal dosimeter in nuclear power plants (NPPs) has been being continuously improved, we investigated application cases in Korea and other countries and also tested it in NPPs to assess the performance of EPD for external radiation dosimetry. Result of performance tests done in domestic NPPs was similar to those obtained by IAEA in cooperation with EURADOS (IAEA-TECDOC-1564). In addition, EPD/TLD dose ratio has shown similar tendency of EPD/Film-badge dose ratio from the research by the Japan Atomic Power Company (JAPC) and EPD provided more conservative value than TLD or Film-badge. Although some EPD's failures have been discussed, EPD has shown continuous improvement according to the report of Institute of Nuclear Power Operation (INPO) and data from domestic NPPs. In conclusion, It is considered that the general performance of EPD is adequate for external radiation dosimetry compared with that of TLD, providing appropriate performance checking procedure and alternative measures for functional failure.