• Title/Summary/Keyword: 피폭 방사선량

Search Result 491, Processing Time 0.029 seconds

Suggestion of A Practical Simple Calculation Method for Safe Transportation Time after Radioactive Iodine Treatment in Patients with Thyroid Cancer (갑상선암 환자에서 방사성옥소치료 후 안전하게 이동할 수 있는 시간을 계산하기 위한 실용적인 간편계산법 제안)

  • Park, Seok-Gun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3919-3925
    • /
    • 2015
  • When a patient with thyroid cancer is released from isolation after I-131 treatment and return to home using a vehicle, travel time should be controlled to reduce the amount of radiation to accompanying person. As the calculation of appropriate travel time is difficult, there is no patient-specific guideline until now. If we assume that there is no excretion and no physical decay during the relatively short travel time, calculation become quite simple; total radiation dose = dose rate ${\times}$ travel time. Results of this simple calculation and conventional calculation were compared using datum from 120 patients. Travel time calculated by simple method was 56% of conventional method in 0.3 m, 91% in 0.5 m and 96% in 1 m. Simple method was safe. It can be applied easily and also can be applied to the patients with hyperthyroidism treated by I-131.

The Measurement of Airborne Radon Daughter Concentrations in the Atmosphere (대기중(大氣中) 라돈 붕괴생성물(崩壞生成物)의 공기중(空氣中) 방사능(放射能) 농도(濃度)의 측정(測定))

  • Ha, Chung-Woo;Lee, Jai-Ki;Moon, Philip S.;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.5-13
    • /
    • 1979
  • A simple method for determining the airborne concentration of radon daughter products has been developed, which is based on gross alpha counting of the air filter collections at several time intervals after completion of air sampling. The concentration of each nuclide is then obtained from an equation involving the alpha disintegrations, the sampling time, and the known numerical coefficients. The state of radioactive disequilibrium is also investigated. The atmosphere sampled in the TRIGA Mark-III reactor room was largely in disequilibrium. The extent of radioactive disequilibrium between radon daughter products seems likely depend on sampling times associated with turbulence conditions. The data obtained here will certainly provide useful information on the evaluation of internal exposure and calibration of effluent monitoring instruments.

  • PDF

Efficacy of a Protective Grass Shield in Reduction of Radiation Exposure Dose During Interventional Radiology (방사선학적 중재적 시술시 납유리의 방사선 방어효과에 관한 연구)

  • Jang, Young-Ill;Song, Jong-Nam;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.303-308
    • /
    • 2011
  • Background/Aims : The increasing use of diagnostic and therapeutic interventional radiology calls for greater consideration of radiation exposure risk to radiologist and radiological technician, and emphasizes the proper system of radiation protection. This study was designed to assess the effect of a protective grass shield. Methods : A protective grass was following data depth, 0.8 cm; width, 100 cm; length, 100 cm, lead equivalent, 1.6 mmPb. The protective shield was located between the patient and the radiologist. Thirty patients (13 male and 17 female) undergoing interventional radiology between September 2010 and December 2010 were selected for this study. The dose of radiation exposure was recorded with or without the protective grass shield at the level of the head, chest, and pelvis. The measurement was made at 50 cm and 150 cm from the radiation source. Results : The mean patient age was 69 years. The mean patient height and weight was $159.7{\pm}6.7$ cm and $60.3{\pm}5.9$ kg, respectively. The mean body mass index (BMI) was $20.5{\pm}3.0$ kg/m2. radiologists received $1530.2{\pm}550.0$ mR/hr without the protective lead shield. At the same distance, radiation exposure was significantly reduced to $50.3{\pm}85.2$ mR/hr with the protective lead shield (p-value<0.0001). The radiation exposure to radiologist and radiological technician was significantly reduced by the use of a protective lead shield (p value <0.0001). The amount of radiation exposure during interventional radiology was related to the patient' BMI (r=0.749, p=0.001). Conclusions : This protective shield grass is effective in protecting radiologist and radiological technician from radiation exposure.

Elementary School in Gwangju Gwangsan Radon gas Density Measurement (광주광역시 광산구 소재 초등학교 라돈가스 농도 계측)

  • Ahn, Byungju;Oh, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • Radium is rock or soil of crust or uranium of building materials after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. In this study, the air in the elementary school classroom nongdoeul tonkatsu place of measured values were compared using the calculated annual internal radiation exposure. La tonkatsu exposure measured in primary school classroom at least five schools when you close the windows in the average floor 0.56mSv 2 floors ground floor windows when opened 0.384mSv 048mSv 3 floors, 2 floor levels of the same three layers 0.31mSv 0.296mSv the human exposure to radon and radiation on the first floor of 3 floors above ground in a lot of exposure was moderate. When you close the window from the first floor up 0.384mSv 056mSv 3 floors with a minimum annual radiation exposure due to natural radiation in the 16 to 23.3 percent minimum 2.4mSv accounted for. When I opened the window to the maximum annual radiation exposure 2.4mSv 0.296mSv 0.31mSv least a minimum of 12.3 to 12.91% accounted for Results suggest that more than five chodeunghakgyoeun La tonkatsu domestic radon measurements conducted below regulatory requirements and internal exposure has also fall within the normal range. People The less the radiation exposure to the human body because it reduces the impact in the classroom in elementary school vent windows often reduced to the maximum radon concentration in the air, if called tonkatsu be able to reduce radiation exposure for the immune system is weak and elementary will be helpful to experiment more in the future for the school authorities called tonkatsu investigation is done to him if the action to establish a more secure school building facilities is thought would be helpful.

Report for Spreading Culture of Medical Radiation Safety in Korea : Mainly the Activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) (국내 의료 방사선 안전문화 활동 현황 : 의료방사선안전문화연합회 중심으로)

  • Yoon, Yong-Su;Kim, Jung-Min;Kim, Hyun-Ji;Choi, In-Seok;Sung, Dong-Wook;Do, Kyung-Hyun;Jung, Seung-Eun;Kim, Hyung-Soo
    • Journal of radiological science and technology
    • /
    • v.36 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people's fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012.

The Evaluation of Dose Reduction and Quality of Images According to 80 kVp of Scan Mode Change in Pediatric Chest CT (소아 흉부 CT 검사에서 관전압 80 kVp 조건으로 스캔 모드별 방사선량 감소와 화질 평가)

  • Kim, Gu;Kim, Gyeong-Rip;Lee, Eun-Sook;Cho, Hee-Jung;Sung, Soon-Ki;Moon, Seul-ji-a;Kwak, Jong-Hyeok
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.8
    • /
    • pp.284-292
    • /
    • 2019
  • To evaluate the usefulness of pediatric chest CT scans by comparing the dose, examination time, and image quality by applying Helical mode, High-pitch mode, and Volume Axial mode to minimize the radiation exposure and obtain high diagnostic value. Revolution (GE Healthcare, Wisconsin USA) was used to divide PBU-70 phantom into Helical mode, High-pitch mode, and Volume Axial mode. After acquiring images, ROI is set for each image, heart, bone, lung, and back-ground air, and the average value is obtained by measuring CT number (HU) and noise (SD). SNR and CNR were measured and compared with DLP values provided directly by the equipment. Determining statistical significance Statistical analysis was performed using ONE-WAY-ANAOVA using SPSS 21.0. In this experiment, it was possible to inspect at a short time without deterioration of image quality with the lowest dose when using volume axial mode. Although the detector coverage of 16 cm is limited to all pediatric chest CT scans, it is recommended to be actively used in pediatric patients, and further study is needed to apply other test sites in volume axial mode.

Changes of Radiation Dose and Image Quality Due to Additional Filtration Material in Computed Radiography (Computed Radiography에서 Additional Filtration Material에 따른 Radiation Dose와 Image Quality의 변화)

  • Kwon, Soon-Mu;Cho, Hyung-Wook;Kang, Yeong-Han;Kim, Boo-Soon;Kim, Jung-Su
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.239-246
    • /
    • 2014
  • Filter absorbs low-energy X-ray to increase the average energy and reduces patient exposure dose. This study investigates if the materials of Mo and W could be used for the digital imaging device CR by conducting image assessment and dose measurement of SNR, FOM and histogram. In addition, measurement of beam quality was conducted depending on the material of the filter, and at the same time, a proper combination of filters was examined depending on the change in tube voltage (kVp). In regard to entrance skin dose, Mo filter showed the dose reduction by 42~56%, compared to Cu filter. Moreover, Mo filter showed higher transmission dose by around 1.5 times than that of Cu filter. In image assessment, it was found that W was unsuitable to be used as a filter, whereas Mo could be used as a filter to reduce dose without decline in image quality at the tube voltage of 80 kVp or higher. As tube voltage increased, 2.0 mm Al+0.1 mm Mo almost had a similar histogram width to that of 2.0 mm Al+0.2 mm Cu. Therefore, Mo filter can be used at relatively high tube voltage of 80 kVp, 100 kVp and 120 kVp. The SNR of 2.0 mm Al+0.1 mm Mo did not show any significant difference from those of 2.0 mm Al+0.2 mm Cu and 2.0 mm Al+0.1 mm Cu. As a result, if Mo filter is used to replace Cu filter in general radiography, where 80 kVp or higher is used for digital radiation image, patient exposure dose can be reduced significantly without decline in image quality, compared to Cu filter. Therefore, it is believed that Mo filter can be applied to chest X-ray and high tube voltage X-ray in actual clinical practice.

Shielding Design Optimization of the HANARO Cold Neutron Triple-Axis Spectrometer and Radiation Dose Measurement (냉중성자 삼축분광장치의 차폐능 최적화 설계 및 선량 측정)

  • Ryu, Ji Myung;Hong, Kwang Pyo;Park, J.M. Sungil;Choi, Young Hyeon;Lee, Kye Hong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • A new cold neutron triple-axis spectrometer (Cold-TAS) was recently constructed at the 30 MWth research reactor, HANARO. The spectrometer, which is composed of neutron optical components and radiation shield, required a redesign of the segmented monochromator shield due to the lack of adequate support of its weight. To shed some weight, lowering the height of the segmented shield was suggested while adding more radiation shield to the top cover of the monochromator chamber. To investigate the radiological effect of such change, we performed MCNPX simulations of a few different configurations of the Cold-TAS monochromator shield and obtained neutron and photon intensities at 5 reference points just outside the shield. Reducing the 35% of the height of the segmented shield and locating lead 10 cm from the bottom of the top cover made of polyethylene was shown to perform just as well as the original configuration as radiation shield excepting gamma flux at two points. Using gamma map by MCNPX, it was checked that is distribution of gamma. Increased flux had direction to the top and it had longer distance from top of segmented shield. However, because of reducing the 35% of the height, height of dissipated gamma was lower than original geometry. Reducing the 35% of the height of the segmented shield and locating lead 10cm from the bottom of the top cover was selected. After changing geometry, radiation dose was measured by TLD for confirming tester's safety at any condition. Neutron(0.21 ${\mu}Svhr^{-1}$) and gamma(3.69 ${\mu}Svhr^{-1}$) radiation dose were satisfied standard(6.25 ${\mu}Svhr^{-1}$).

A Study on Enacting the Radiologic Technologist Act for the Civil Right to Health in Korea (건강권과 방사선사법 제정에 관한 고찰)

  • Lim, Chang-Seon
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.313-320
    • /
    • 2007
  • There are the Medical Radiation Health and Safety Act(the Patient Radiation Health and Safety Act, the Radiologic Technologist Act), the Medical Laboratory Technologist Act, the Physical Therapy Practice Act, and the Dental Hygienist Act, etc in America. However, Korea has only one Act for a medical radiologic technologist(including radiation therapy technologist, nuclear medicine technologist), medical laboratory technologist, physical therapist, occupational therapy examiner, dental hygienist, and so on. It is the Medical Technologist Act. Therefore, the Medical Radiation Health and Safety Act for a radiologic technologist(including radiation therapy technologist, nuclear medicine technologist) has to be enacted independently in Korea. It is the purpose of this Act to provide for the appropriate certification of persons using radioactive materials, equipment emitting ionizing radiation on humans or performing medical imaging for diagnostic and therapeutic purposes. In Korea, the radiologic technologist is a "fusion technologist" who is a person other than a licensed practitioner as a radiographer, radiation therapist, nuclear medicine technologist, computed tomography technologist, magnetic resonance technologist, mammographer, sonographer, medical dosimetrist, quality management technologist, etc. This Act will have some provisions related to the definitions, reserved title, scope of practice, specialized technologist, application for licensure, radiologic technology council, renewal, continuing education, the radiation control advisory commission, etc. This Act will ensure that quality radiation therapy treatments are delivered and that quality diagnostic information is presented for interpretation, which will lead to accurate diagnosis, treatment and cure. Accurate diagnosis can be provided only when a personnel is properly educated in technique, equipment operation and radiation safety. In the end, this Act will protect the civil right to health. By regulating the personnel responsible for performing those procedures, this Act will mean improved care for patients-higher quality images, improved accuracy, and less exposure to radiation.

  • PDF

A Study on the Tendency of Dose value According to Dose calibrator Measurement Depth and Volume (Dose calibrator 측정 깊이와 용량의 변화에 따른 선량 값의 성향에 대한 고찰)

  • Kim, Jin Gu;Ham, Jun Cheol;Oh, Shin Hyun;Kang, Chun Koo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Purpose It is intended to figure out the errors derived from changes in depth and volume when measuring the Standard source and 99mTc-pertechnetate by using a Dose calibrator. Then recommend appropriate measurement depth and volume. Materials and Methods As a Dose calibrator, CRC-15βeta and CRC-15R (Capintec, New Jersey, USA) was used, and the measurement sources were 57Co, 133Ba, 137Cs and 99mTc-pertechnetate was also adopted due to its high frequency of use. The Standard source was respectively measured the changes according to its depth without changing the volume, in a range of 0 cm to 15 cm from the bottom of the ion chamber. 99mTc-pertechnetate was measured at each depth by changing the volume with 0.1 mL, 0.3 mL, 0.5 mL, 0.7 mL and 0.9 mL Respectively. And the depth range was from 0 cm to 15 cm at the bottom of the ion chamber. Results In the case of Standard source 57Co, 133Ba, 137Cs and 99mTc-pertechnetate, there were significant differences according to the measurement depth(p<0.05). 99mTc-pertechnetate has a negative correlation coefficient according to the depth, and the error of the measured value was negligible at a depth from 0 cm to 7 cm at 0.3 mL and 0.5 mL, and the range of error increased as the volume increased. Conclusion In clinical practice, it is sometimes installed differently than the Standard depth recommended by the equipment company. If it's measured at the recommended depth and volume, it could be thought that unnecessary exposure of the operator and the patient will be reduced, and more accurate radiation exams will be possible in quantitative analysis.