• Title/Summary/Keyword: 피쳐 추출

Search Result 24, Processing Time 0.026 seconds

Retrieval of Key-frames using Wavelet Transform (Wavelet Transform을 이용한 Key-frame 검색)

  • 정세윤;김규헌;전병태;이재연;배영래
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.509-511
    • /
    • 1998
  • 본 논문에서는 동영상 데이터베이스에서 Key-frame을 검색하는 방법을 제안한다. 본 논문에서는 Key-frame을 검색하기위해 컬러 피쳐를 공간영역에서 추출하지 않고 wavelet transform 영역에서 컬러 피쳐를 추출하는 방법을 제안한다. wavelet transform 의 저주파 밴드는 영상전체의 특징을 잘 나타내고 고주파 밴드는 texture 와 국부적인 컬러 특성을 잘 나타낸다. 색인과정 알고리즘은 영상의 크기를 정규화하고 RGB 컬러공간에서 HSV 컬러 공간으로 변환을 하여, H, S, V 각 채널에 대해 Daubechies' wavelet transform을 수행한 후 변환 영역에서 피쳐를 추출하게 된다. 색인을 위한 피쳐로 wavelet 계수와 lowest 밴드의 평균과 표준편차를 추출하였다. 효율적인 검색을 위해 검색은 2단계로 수행된다. 먼저 평균과 표준편차만을 이용한 1차 검색을 통해 2차 검색의 후보 영상들을 추출하고 2차 검색에서는 1차 검색 통과 영상들에 대해서만 wavelet 계수들을 비교하여 최종 검색 결과를 얻게 된다. 검색결과 기존의 컬러 피쳐를 이용한 방법보다 우수한 검색결과를 얻을 수 있었다.

  • PDF

Printed Korean Characters Recognition Using Neural Networks Based on Feature Extraction (피쳐 추출에 기반을 둔 신경회로망을 이용한 인쇄체 한글 문자 인식)

  • Kim, Woo-Tae;Yoon, Byung-Sik;Chien, Sung-Il
    • Annual Conference on Human and Language Technology
    • /
    • 1991.10a
    • /
    • pp.287-299
    • /
    • 1991
  • 본 논문은 하드웨어 구현이 가능한 신경 회로망을 구성하여 한글 문자 인식을 수행하였다. 먼저 입력 장치로부터 받아들인 문자 영상은 인식 속도를 높히기 위하여 특별한 전처리 과정 없이 직접 피쳐를 추출하였으며 추출한 피쳐로는 하드웨어 구현이 용이한 교차 피쳐와 투영 피쳐를 이진화로 코딩하였다. 신경 회로망의 하드웨어 구현을 가능하게 하기위해서 정수형 연결 강도와 비선형 Hard-limit 함수를 가지고 학습을 하는 Rounding 학습 방법을 도입하여 학습시켰으며 한글의 구조적 특성을 이용하여 한글을 유형별로 Module화 및 Submodule화 작업을 수행한 다음 인식하는 계층적인 문자 인식 시스템을 구성하였다. 그리고 이러한 방법을 이용하여 한글 문자 인식용 CMOS 신경회로망 Chip을 설계하였다.

  • PDF

Object Detection Network Feature Map Compression using CompressAI (CompressAI 를 활용한 객체 검출 네트워크 피쳐 맵 압축)

  • Do, Jihoon;Lee, Jooyoung;Kim, Younhee;Choi, Jin Soo;Jeong, Se Yoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.7-9
    • /
    • 2021
  • 본 논문은 Detectron2 [1]에서 지원하는 객체 검출 임무 수행 네트워크의 과정 중에서 추출한 피쳐 맵을 신경망 기반으로 압축하는 방법을 제안한다. 이를 위해, 신경 망 기반 영상 압축을 지원하는 공개 소프트웨어인 CompressAI [2] 모델 중 하나인 bmshj2018-hyperprior 의 압축 네트워크를 활용하여 임무 수행 네트워크의 과정 중 스탬 레이어(stem layer)에서 추출된 피쳐 맵을 압축하도록 학습시켰다. 또한, 압축 네트워크의 입력 피쳐 맵의 너비와 높이 크기가 64 의 배수가 되도록 객체 검출 네트워크의 입력 영상 보간 값을 조정하는 방법도 제안한다. 제안하는 신경망 기반 피쳐 맵 압축 방법은 피쳐 맵을 최근 표준이 완료된 차세대 압축 표준 방법인 VVC(Versatile Video Coding, [3])로 압축한 결과에 비해 큰 성능 향상을 보이고, VCM 앵커와 유사한 성능을 보인다.

  • PDF

Developing Features for Bio Event Extraction (바이오 이벤트 추출을 위한 피쳐 개발)

  • Lee, Seok-Jun;Kim, Young-Tae;Hwang, Min-Kook;Lim, Soo-Jong;Ra, Dong-Yul
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.39-44
    • /
    • 2013
  • 본 논문은 바이오 문서에서의 정보추출 시스템 개발에 대한 것이다. 이 시스템의 목표는 바이오 관련 문서에서 바이오 이벤트의 발생을 탐지하고 이벤트의 타입 및 이벤트에 관여된 필수 논항을 채우는 구문요소를 인식하는 것이다. 우리는 두 개의 별도의 단계를 이용하는 시스템 구성을 사용한다. 첫 단계에서는 SVM을 사용하여 이벤트의 발생 및 이벤트의 타입을 결정한다. 두 번째 단계에서는 이벤트의 논항을 채우는 참여자를 인식하는 작업을 한다. 본 논문은 단계 1에서 사용되는 SVM의 피쳐 리스트의 개발에 대한 문제를 다룬다. 본 논문에서 제안하는 피쳐 리스트를 사용하여 좋은 성능을 가지는 첫 단계에 대한 모듈을 얻을 수 있음을 관찰하였다.

  • PDF

Automatic Registration between Multiple IR Images Using Simple Pre-processing Method and Modified Local Features Extraction Algorithm (단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용한 다중 적외선영상 자동 기하보정)

  • Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.485-494
    • /
    • 2017
  • This study focuses on automatic image registration between multiple IR images using simple preprocessing method and modified local feature extraction algorithm. The input images were preprocessed by using the median and absolute value after histogram equalization, and it could be effectively applied to reduce the brightness difference value between images by applying the similarity of extracted features to the concept of angle instead of distance. The results were evaluated using visual and inverse RMSE methods. The features that could not be achieved by the existing local feature extraction technique showed high image matching reliability and application convenience. It is expected that this method can be used as one of the automatic registration methods between multi-sensor images under specific conditions.

Face Recognition by Fiducial Points Based Gabor and LBP Features (특징점기반 Gabor 및 LBP 피쳐를 이용한 얼굴 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The accuracy of a real facial recognition system can be varied according to the accuracy of the eye detection algorithm when we design and implement a semi-automatic facial recognition algorithm depending on the eye position of a database. In this paper, a fully automatic facial recognition algorithm is proposed such that Gabor and LBP features are extracted from fiducial points of a face graph which was created by using fiducial points based on the eyes, nose, mouth and border lines of a face, fitted on the face image. In this algorithm, the recognition performance could be increased because a face graph can be fitted on a face image automatically and fiducial points based LPB features are implemented with the basic Gabor features. The simulation results show that the proposed algorithm can be used in real-time recognition for more than 1,000 faces and produce good recognition performance for each data set.

Automatic Recognition of Analog and Digital Modulation Signals (아날로그 및 디지털 변조 신호의 자동 인식)

  • Seo Seunghan;Yoon Yeojong;Jin Younghwan;Seo Yongju;Lim Sunmin;Ahn Jaemin;Eun Chang-Soo;Jang Won;Nah Sunphil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.73-81
    • /
    • 2005
  • We propose an automatic modulation recognition scheme which extracts pre-defined key features from the received signal and then applies equal gain combining method to determine the used modulation. Moreover, we compare and analyze the performance of the proposed algorithm with that of decision-theoretic algorithm. Our scheme extracts five pre-defined key features from each data segment, a data unit for the key feature extraction, which are then averaged over all the segments to recognize the modulation according to the decision procedure. We check the performance of the proposed algorithm through computer simulations for analog modulations such as AM, FM, SSB and for digital modulations such as FSK2, FSK4, PSK2, and PSK4, by measuring recognition success rate varying SNR and data collection time. The result shows that the performance of the proposed scheme is comparable to that of the decision-theoretic algorithm with less complexity.

Feature Extraction Techniques Using Optical Hough Transform (Optical Hough Transform을 사용한 피쳐 추출 기법)

  • 진성일
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.121-125
    • /
    • 1990
  • Optical Hough transform technique is introduced to obtain the straight line features in parallel from the input scene images. Experimental results are also provided to demonstrate the advantage of such optical parallel processor over the digital one. Peaks in optical Hough space are free from quantization noise and thus easy to detect.

  • PDF

Face recognition of Intra-red Images for Interactive TV Control System (인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상의 얼굴 인식)

  • Won, Chul-Ho;Lee, Sang-Heon;Lee, Tae-Gyoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.11-17
    • /
    • 2010
  • In this parer, face recognition method which can be applied to ITCS (interactive TV control system) is proposed. We extracted ULBP(uniform local binary pattern) histogram feature from infra-red images, and we detected left-right eyes and face region by using SVM classifier. Then, We implemented face recognition system which is using Gabor transform and ULBP histogram feature and applied to personal verification for ITCS.

Parameter-Efficient Multi-Modal Highlight Detection via Prompting (Prompting 기반 매개변수 효율적인 멀티 모달 영상 하이라이트 검출 연구)

  • DongHoon Han;Seong-Uk Nam;Eunhwan Park;Nojun Kwak
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.372-376
    • /
    • 2023
  • 본 연구에서는 비디오 하이라이트 검출 및 장면 추출을 위한 경량화된 모델인 Visual Context Learner (VCL)을 제안한다. 기존 연구에서는 매개변수가 고정된 CLIP을 비롯한 여러 피쳐 추출기에 학습 가능한 DETR과 같은 트랜스포머를 이어붙여서 학습을 한다. 하지만 본 연구는 경량화된 구조로 하이라이트 검출 성능을 개선시킬 수 있음을 보인다. 그리고 해당 형태로 장면 추출도 가능함을 보이며 장면 추출의 추가 연구 가능성을 시사한다. VCL은 매개변수가 고정된 CLIP에 학습가능한 프롬프트와 MLP로 하이라이트 검출과 장면 추출을 진행한다. 총 2,141개의 학습가능한 매개변수를 사용하여 하이라이트 검출의 HIT@1(>=Very Good) 성능을 기존 CLIP보다 2.71% 개선된 성능과 최소한의 장면 추출 성능을 보인다.

  • PDF