• Title/Summary/Keyword: 피부색 추출

Search Result 178, Processing Time 0.021 seconds

Face Feature Extraction for Face Recognition (얼굴 인식을 위한 얼굴 특징점 추출)

  • Yang, Ryong;Chae, Duk-Jae;Lee, Sang-Bum
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.12
    • /
    • pp.1765-1774
    • /
    • 2002
  • A face recognition is currently the field which many research have been processed actively. But many problems must be solved the previous problem. First, We must recognize the face of the object taking a location various lighting change and change of the camera into account. In this paper, we proposed that new method to fund feature within fast and correct computation time after scanning PC camera and ID card picture. It converted RGB color space to YUV. A face skin color extracts which equalize a histogram of Y ingredient without the luminance. After, the method use V' ingredient which transformes V ingredient of YUV and then find the face feature. The reult of the experiment shows getting correct input face image from ID Card picture and PC camera.

  • PDF

Facial Boundary Detection using an Active Contour Model (활성 윤곽선 모델을 이용한 얼굴 경계선 추출)

  • Chang Jae Sik;Kim Eun Yi;Kim Hang Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.79-87
    • /
    • 2005
  • This paper presents an active contour model for extracting accurate facial regions in complex environments. In the model, a contour is represented by a zero level set of level function φ, and evolved via level set partial differential equations. Then, unlike general active contours, skin color information that is represented by 2D Gaussian model is used for evolving and slopping a curve, which allows the proposed method to be robust to noise and varying pose. To assess the effectiveness of the proposed method it was tested with several natural scenes, and the results were compared with those of geodesic active contours. Experimental results demonstrate the superior performance of the proposed method.

Face Region Detection and Verification using both WPA and Spatially Restricted Statistic (공간 제약 특성과 WPA를 이용한 얼굴 영역 검출 및 검증 방법)

  • Song, Ho-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.542-548
    • /
    • 2006
  • In this paper, we propose a face region detection/verification method using wavelet packet analysis and structural statistic for frontal human color image. The method extracts skin color lesions from input images, first. and then applies spatial restrictive conditions to the region, and determines whether the region is face candidate region or not. In second step, we find eye region in the face candidate region using structural statistic for standard korean faces. And in last step, the face region is verified via wavelet packet analysis if the face torture were satisfied to normal texture conditions.

A Face Detection using Pupil-Template from Color Base Image (컬러 기반 영상에서 눈동자 템플릿을 이용한 얼굴영상 추출)

  • Choi, Ji-Young;Kim, Mi-Kyung;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.828-831
    • /
    • 2005
  • In this paper we propose a method to detect human faces from color image using pupil-template matching. Face detection is done by three stages. (i)separating skin regions from non-skin regions; (ii)generating a face regions by application of the best-fit ellipse; (iii)detecting face by pupil-template. Detecting skin regions is based on a skin color model. we generate a gray scale image from original image by the skin model. The gray scale image is segmented to separated skin regions from non-skin regions. Face region is generated by application of the best-fit ellipse is computed on the base of moments. Generated face regions are matched by pupil-template. And we detection face.

  • PDF

A Virtual Makeup Program Using Facial Feature Area Extraction Based on Active Shape Model and Modified Alpha Blending (ASM 기반의 얼굴 특징 영역 추출 및 변형된 알파 블렌딩을 이용한 가상 메이크업 프로그램)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1827-1835
    • /
    • 2010
  • In this paper, facial feature areas in user picture are created by facial feature points extracted by ASM(Active Shape Model). In a existing virtual make-up application, users manually select a few features that are exactly. Users are uncomfortable with this method. We propose a virtual makeup application using ASM that does not require user input. In order to express a natural makeup, the modified alpha blendings for each cosmetic are used to blend skin color with cosmetic color. The Virtual makeup application was implemented to apply Foundation, Blush, Lip Stick, Lip Liner, Eye Pencil, Eye Liner and Eye Shadow.

Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features (Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식)

  • Go Gi-Young;Kim Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • In this paper, we propose a face recognition system by using the CCD color image. We first get the face candidate image by using YCbCr color model and adaptive skin color information. And we use it initial curve of active contour model to extract face region. We use the Eye map and mouth map using color information for extracting facial feature from the face image. To obtain center point of Log-polar image, we use extracted facial feature from the face image. In order to obtain feature vectors, we use extracted coefficients from DCT and wavelet transform. To show the validity of the proposed method, we performed a face recognition using neural network with BP learning algorithm. Experimental results show that the proposed method is robuster with higher recogntion rate than the conventional method for the rotation and scale variant.

  • PDF

Hand Feature Extraction Algorithm Using Curvature Analysis For Recognition of Various Hand Gestures (다양한 손 제스처 인식을 위한 곡률 분석 기반의 손 특징 추출 알고리즘)

  • Yoon, Hong-Chan;Cho, Jin-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.13-20
    • /
    • 2015
  • In this paper, we propose an algorithm that can recognize not only the number of stretched fingers but also determination of attached fingers for extracting features required for hand gesture recognition. The proposed algorithm detects the hand area in the input image by the skin color range filter based on a color model and labeling, and then recognizes various hand gestures by extracting the number of stretched fingers and determination of attached fingers using curvature information extracted from outlines and feature points. Experiment results show that the recognition rate and the frame rate are similar to those of the conventional algorithm, but the number of gesture cases that can be defined by the extracted characteristics is about four times higher than the conventional algorithm, so that the proposed algorithm can recognize more various gestures.

Back-Propagation Neural Network Based Face Detection and Pose Estimation (오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정)

  • Lee, Jae-Hoon;Jun, In-Ja;Lee, Jung-Hoon;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.853-862
    • /
    • 2002
  • Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.

Robot vision system for face tracking using color information from video images (로봇의 시각시스템을 위한 동영상에서 칼라정보를 이용한 얼굴 추적)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • This paper proposed the face tracking method which can be effectively applied to the robot's vision system. The proposed algorithm tracks the facial areas after detecting the area of video motion. Movement detection of video images is done by using median filter and erosion and dilation operation as a method for removing noise, after getting the different images using two continual frames. To extract the skin color from the moving area, the color information of sample images is used. The skin color region and the background area are separated by evaluating the similarity by generating membership functions by using MIN-MAX values as fuzzy data. For the face candidate region, the eyes are detected from C channel of color space CMY, and the mouth from Q channel of color space YIQ. The face region is tracked seeking the features of the eyes and the mouth detected from knowledge-base. Experiment includes 1,500 frames of the video images from 10 subjects, 150 frames per subject. The result shows 95.7% of detection rate (the motion areas of 1,435 frames are detected) and 97.6% of good face tracking result (1,401 faces are tracked).

Motion Capture using both Human Structural Characteristic and Inverse Kinematics (인체의 구조적 특성과 역운동학을 이용한 모션 캡처)

  • Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.20-32
    • /
    • 2010
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.