• Title/Summary/Keyword: 피로 단균열

Search Result 37, Processing Time 0.026 seconds

Analysis of fatigue Crack Growth Behavior in the Integrally Stiffened Panels Subjected to Single Overload (과하중을 받는 일체형 보강판의 피로균열 성장거동 해석)

  • 이환우;서정호
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • It is well known that tensile peak overloads may significantly delay suubsequent constant amplitude fatigue crack growth in many materials. Since real structures are usually subjected to complex load histories, the ability to predict accurate crack growth under realistic service conditions is of major engineering interest. This paper describes experiments on fatigue track growth in the integrally stiffened panel of 7075-T6 aluminum alloy. The effect of shape parameters and overload position on the fatigue crack growth behavior of integrally stiffened panels are discussed. Based on the experimental results, the following conclusions have been drawn: the overall fatigue crack growth retardation resulting from single overload in the stiffened panels was generally larger in the larger thickness ratio, although the retardation trends, according to the change in overload positions, were similar to those exhibited in the non-stiffened panels.

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.

전자처리 스펠클 간섭법을 이용한 다점 용접 접합부의 면외 변위측정

  • 박영문;차용훈;성백섭;김일수;김하식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.124-129
    • /
    • 2001
  • 점 용접부는 응력상태가 복잡하고, 피로균열은 판 두께, 너겟 직경, 용접 타점수, 부하 방식 등의 역학적인 인자와 재질, 화학성분, 표면 상태 등의 재료적인 인자, 그리고 용접전류, 가압력, 통전 시간등의 용접적인 인자의 영향을 동시에 받으며 3차원적으로 성장하므로 균열 성장 모드는 항상 혼합보드이고 균열이 박판 내면에서 발생. 성장하므로 검출이 곤란하여 균열 성장의 해석 및 예측이 어렵다/sup 1)/. 따라서 비접촉, 실시간, Whole-field, 레이저 파장 단위까지 측정이 가능하여 기존의 방법들의 문제점을 극복할 수 있고, 반도체와 같은 소형의 제품뿐만 아니라 기존에 측정하지 못했던 초고온, 대형 구조물의 변형도 정확하게 측정을 할 수 있는 ESPI법을 이용하여 일반가전 제품, 자동차 건축용에 많이 사용되고 있는 아연도금강판(SGCC)을 선택하여 단일 용접조건으로 점용접의 피치를 변화시켜 시험편을 제작하고 면외변위를 다각도로 측정하여 그 가능성을 검증하고자 한다.(중략)

  • PDF

Effect of Single Overload on the Fatigue Crack Growth Behavior of Laser Welded Sheet Metal (단일 과대하중에 의한 레이저 용접 판재의 피로균열 전파거동)

  • 곽대순;김석환;오택열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.161-169
    • /
    • 2004
  • In this study, we investigated fatigue crack growth behavior of laser welded sheet metal due to a single overload. Fatigue specimens were made using butt joint of cold rolled sheet metal that was welded by $CO_2$ laser. The fatigue crack propagation tests were performed in such a way that fatigue loading was parallel to the weld line while crack propagation was perpendicular to the weld line. Single overload was applied when fatigue crack tip was arrived near the weld line. The distances between the crack tip and the weld line at which a single overload was applied were 6, 4 and 2mm. The effect of specimen thickness and overload ratio on the fatigue behavior was determined. The plastic zone size of crack tip due to the single overload was determined from the finite element analysis. For investigating fatigue crack growth behavior, we used different thickness specimen 0.9mm and 2.0mm, and variable overload ratio applied fatigue crack propagation test. Also we used finite element analysis for investigating the plastic zone size of crack tip when single overload applied

Fatigue Damage Analysis of a Low-Pressure Turbine Blade (저압터빈 블레이드의 피로손상 해석)

  • Youn, Hee Chul;Woo, Chang Ki;Hwang, Jai Kon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.713-720
    • /
    • 2015
  • The sizes of the final blades of a low-pressure (LP) steam turbine have been getting larger for the development of high-capacity power plants. They are also larger than the other blades in the same system. As a result, fatigue damage is caused by a large centrifugal force and a low natural frequency of the blade. Recently, many failure cases have been reported due to repeated turbine startups and their prolonged use. In this study, the causes and mechanism of failure of a LP turbine blade were analyzed by using a finite element method to calculate the centrifugal force, the natural frequency of a stress-stiffening effect, and the harmonic response. It was observed that the expected fatigue damage position matched the real crack position at the airfoil's leading edge, and an equivalence fatigue limit approached a notch fatigue limit.

The effect of random spectrum on the fatigue life of hybrid metal matrix composites (랜덤하중이 하이브리드 금속복합재료의 피로수명에 미치는 영향)

  • 김성훈;배성인;송정일
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.48-55
    • /
    • 2003
  • This research makes comparisons of empirical fatigue-lives between AC8A A1 alloy and the metal matrix composites(A1/A12O3, A1/A12O3/A12O3p), and also includes comparisons of fatigue-lives between empirical fatigue-lives and estimated fatigue-lives from regular-periodic load testing, AE method to predict fatigue-crack initiation before visible in sight and SEM(scanning electron microscope) photographs of each material. According to the test results of the notched specimen. the fatigue life of the hybrid metal matrix composites and the metal matrix composites, which are more brittle than the base matrix was shorter than that of the base matrix under both types of loads. In addition, the fatigue-life estimated from the damage summation method and that from experiments at random loads were fairly identical.

Damage Analysis for Last-Stage Blade of Low-Pressure Turbine (저압터빈 최종단 블레이드 손상해석)

  • Song, Gee Wook;Choi, Woo Sung;Kim, Wanjae;Jung, Nam Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1153-1157
    • /
    • 2013
  • A steam turbine blade is one of the core parts in a power plant. It transforms steam energy into mechanical energy. It is installed on the rim of a rotor disk. Many failure cases have been reported at the final stage blades of a low-pressure (LP) turbine that is cyclically loaded by centrifugal force because of the repeated startups of the turbine. Therefore, to ensure the safety of an LP steam turbine blade, it is necessary to investigate the fatigue strength and life. In this study, the low cycle fatigue life of an LP steam turbine blade is evaluated based on actual damage analysis. To determine the crack initiation life of the final stage of a steam turbine, Neuber's rule is applied to elastic stresses by the finite element method to calculate the true strain amplitude. It is observed that the expected life and actual number of starts/stops of the blade were well matched.

A Study on the Microscopic Model for Fatigue Crack Closure Behavior (피로균열 개폐구거동의 미시적 모델에 관한 연구)

  • O, Se-Uk;Gang, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

  • PDF

A Study on the Microscopic Model for Fatigue Crack Closure Behavior (피로균열 개폐구거동의 미시적 모델에 관한 연구)

  • O, Se-Uk;Gang, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.87-87
    • /
    • 1990
  • Fatigue crack closure levels based on the behavior of residual displacements on crack surfaces, are determined analytically according to the microscopic crack closure mechanisms, i.e., whether the first contact of crack surfaces takes place at the very crack tip or on the surfaces near the tip. The comparative analysis on the two models is carried out empirically by the constant amplitude fatigue tests on 2024-T3 aluminum alloy plate, and it shows that under negative stress ratio, the case of the first contact at crack tip gives better agreement with the experimental results than the other.

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.