• Title/Summary/Keyword: 피로 균열 성장

Search Result 350, Processing Time 0.03 seconds

Analysis of Fatigue Crack Growth in a Viscoelastic Material using ${\Delta}J$-integral (${\Delta}J$-적분을 이용한 점탄성 재료의 피로균열 성장분석)

  • Yu, Seong-Mun;Zi, Goang-Seup;Thanh, Chau Dinh;Lee, Hyun-Jong;Mun, Sung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.483-491
    • /
    • 2010
  • In this paper, ${\Delta}J$-integral is used to analyze fatigue crack growth of viscoelastic material. Using analytical integral value, the J-integral is calculated. So, reduction of calculation time and increase of accuracy are made possible. The stress intensity factor is calculated using the finite element method code. In difference with existed fatigue crack analysis using ${\Delta}K$, we were successfully able to analyze various load amplitude and the fatigue crack of load cycle only with two fatigue crack growth parameters and creep compliance. The analysis gives N-${\alpha}$ curve for simulation of crack growth, and the curve almost corresponds with test results.

A Study on Prediction of Crack growth Rate Under Creep-Fatigue Interaction (크리이프-피로 상호작용하의 균열성장속도 예측에 관한 연구)

  • Joo, Won-Sik;Cho, Seok-Swoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-111
    • /
    • 1995
  • High temperature low cycle fatigue shows that cycle-dependent crack growth owing to cyclic plastic deformation occurred simultaneosly with time-dependent crack growth owing to intergranular deformation. Consequently, to estimate crack growth rate uniquely, many to investigators have proposed various kinds of parameters and theories but these could not produce satisfactory results. Therefore the goal of this study is focused on prediction of crack growth rate using predominant damage rule, linear cumulative damage rule and transitional parameter ${\Delta}J_c/{\Delta}J_f$. On the basis of these sinusoidal loading waveform at 600$^{\circ}C$ and 700$^{\circ}C$.

  • PDF

A Study on the Fatigue Crack Growth Behavior of Surface Cracks (SB41 강의 표면 피로균열 진전 특성에 관한 연구)

  • 배원호;김상태;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.916-923
    • /
    • 1991
  • 본 연구에서는 표면 균열이 있는 평판의 탄소성 피로하중 상태에서 성장하는 균열 형태의 변화와, 작용하는 응력의 크기에 따른 균열 개페구 특성의 변화를 연구하 였다.또, 유효 응력 확대계수 범위, .DELTA.K$_{eff}$와 J적분범위, .DELTA.J가 탄소성 응력 상태에서의 표면 피로균열 진전속도를 나타내는 역학양으로 사용되는데 따른 적합성등 을 검토하였다.

Fatigue Characteristics according to the Shape of Cover Plate in Steel Plate Girders (강판형의 덮개판 형상에 따른 피로특성)

  • Jung, Young Hwa;Hong, Sung Wook;Kim, Ik Gyeom;Jung, Jin Suck
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.111-122
    • /
    • 2000
  • In this study, A series of fatigue tests have been performed on the fillet welded joints of cover plates in steel plate girders in order to quantitatively assess the fatigue characteristics according to the shapes of cover plates. From the results of fatigue tests, it has been shown that the fatigue strengths were slightly different according to their shapes, but satisfied the fatigue design curves in Korea and other countries. Also, from the results of beachmark tests, it has been confirmed that the points of fatigue crack initiation were closely related to the shapes of weld bead toes, and fatigue cracks simultaneously initiated from several points in weld bead toes have been grown as semi-elliptical surface cracks, and these cracks have been coalesced each other, and grown as through thickness cracks, and finally reached to fracture. Besides, from the results of fracture mechanics approaches, stress gradient factors were the most dominant factors among crack correction factors obtained from the existing equations and finite element analysis, and the fatigue life on fillet welded joints of cover plates could be estimated using the relations between fatigue crack growth rate and stress intensity factor range obtained from finite element analysis.

  • PDF

Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Specimen Thickness Conditions (AZ31 마그네슘합금의 시편두께 조건에 따른 실험적 피로균열전파모델 평가)

  • Choi, Seon Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.646-652
    • /
    • 2014
  • It is the primary aim of this paper to propose the empirical fatigue crack propagation model fit to describe a crack growth behavior of AZ31 magnesium alloys under the different specimen thickness conditions. The empirical models estimated are Paris-Erdogan model, Walker model, Forman model, and modified-Forman model. The parameters of each model are estimated by maximum likelihood method. The statistical crack growth data needed for an estimation of empirical models are obtained by fatigue crack propagation tests under the three cases of specimen thickness. It is found that the good empirical models fit to describe a crack growth behavior of AZ31 magnesium alloys under the different specimen thickness conditions are Paris-Erdogan model and Walker model. It is also verified that a fatigue crack growth rate exponent of a empirical model may be a material constant at the specimen thickness conditions of 4.75mm and 6.60mm.

複合材料의 破壞에 對한 破壞力學的 어프로우치 (II) -피로시험 및 구열 성장 거동 해석-

  • 최용식
    • Journal of the KSME
    • /
    • v.22 no.3
    • /
    • pp.203-213
    • /
    • 1982
  • 이재결합재의 피로시험에서 나타나는 피로균열성정거동은, 역시 균열선단이 결합경계의 근방에 있거나 경계상에 있을 때의 것이 균질재료에서의, 거동과 비교.검토되어야겠다. 이재결합재를 여기에서는 탄성계수 E 값이 동일(또는 근접)한 이재간의 결합재와, E 값이 현저히 다른 이재 간의 결합재로 나누어 그 피로시험예를 검토해 나가기로 하겠다. 또한 전술한 바와 같이 이재 결합재에 의한 피로시험 그 자체의 난전으로 말미암아 파괴역학적으로 해석된 이재결합재피로 균열거동연구보고가 극히 부진함에 비추어 여기에서는 주로 필자가 발효한 연구보고들을 바탕 으로 해서 검토해 나가기로 하겠다.

  • PDF

A Study on the Application of Pre-Indentation Technique for Fastener Hole Model (FASTENER HOLE 모델의 대한 예비압입 적용 연구)

  • Hwang,Jeong-Seon;Jo,Hwan-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.26-31
    • /
    • 2003
  • Aging aircraft accumulates widespread fatigue damage commonly referred to as multiple site damage(MSO). For ductile material such as 2024-T3 aluminum, MSO may lower the service life below that which is predicted by conventional fracture mechanics. The present paper is concerned with the fatigue life extension by pre-indentation technique for thin 2024-T3 aluminum plate to decelerate the crack propagation rate in the panels with MSO. The panel with fastener holes can be simply modelled by Hole/Slot type Middle-Tension specimen. Results of fatigue testing show significantly improving failure cycles from 10 to 40 times. This retardation effect is decreased by increasing the loading level in the constant amplitude loading. In the sense of retardation mechanism, the crack propagation rate is gradually attenuated by entering the indentation mark and maintains at the lowest value for a long period after the edge of crack passes the center of indentation area.

Small Fatigue Crack Measurement and Crack Growth Characteristics for Smooth and Notch Specimens (평활 및 노치재의 미소피로균열측정과 성장특성)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2145-2152
    • /
    • 1993
  • The objective of this paper is to examine the detection limit, growth characteristics and notch curvature radius in short crack problem. Measurement techniques such as ultrasonic method and back-face strain compliance method were adopted. The fatigue crack growth rate of the short crack is slower than that of a long crack for a notched specimen. The characteristic of crack growth and crack closure is same as the case of a delay of crack growth caused by constant amplitude load for an ideal crack or single peak overload for a fatigue crack. The short crack is detected effectively by ultrasonic method. A short surface crack occurs in the middle of specimen thickness and is transient to a through crack depth is larger than the notch curvature radius.

분말소결 알루미늄 합금의 반복하중에 의한 미시균열 성장연구

  • ;;Klaus Detert
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.21-31
    • /
    • 1991
  • 대부분의 구조물은 정하중뿐아니라 동하중을 받고있으며, 반복되는 동하중에 의해 구조물은 피로를 받게되고 가장 취약한 부위에 작은 미시균열이 발생된다. 미시균열이 성장, 확산되어 기술적으로 인지되는 길이가 0.5 mm 이상이 될때 이를 거시균열이라 하는데, 거시균열의 균열성장은 파괴역학적 해석 방법의 도입으로 많은 공학적 재료들이 광범위하게 연구되었으며, 거시균열의 확산과 연관되어지는 균열닫힘과 미시구조의 관계가 연구되었다. 최근에는 거시균열의 해석과 같이 응력강도가 미시균열에서의 확산거동에 미치는 영향을 설명하는데 많은 관심을 가지게 되었다.(중략)

  • PDF

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF