• Title/Summary/Keyword: 피로해석 시스템

Search Result 117, Processing Time 0.023 seconds

Fatigue Durability Analysis and Evaluation for Straighted Type Exhaust System of Automobile (자동차용 직선화 배기시스템의 피로내구 해석 및 평가)

  • Park Sejong;Suh Hocheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.147-152
    • /
    • 2005
  • The exhaust system of automobile is faced with random or spectrum types of fatigue loads during usage life and so needs to be closely estimated for quality and performance to have enough certainty on design endurance lift during preliminary design process. Structural operation conditions, operation load history, property of material and manufacturing process etc. should be considered by performing experiment approach. Using the software program for predicting fatigue life quickly and exactly in preliminary design stage saves plenty of time and cost generated by fatigue tests. In this paper, fatigue life prediction was performed on the basis of fatigue analysis using MSC/FATIGUE and load data from field test and the life of development items was estimated and compared through the results.

Life Fatigue Prediction of an Accumulator Composed of Bladder and Housing (블래더와 하우징으로 구성된 축압기의 수명피로예측)

  • Kim, Daeyu;Lee, Geonhee;Hur, Jangwook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2018
  • Recently in weapon systems development, the importance of reliability has been emphasized due to the increase in complexity and the rapid development of key components and components. Accordingly, the importance of lifespan testing is increased. However, lifespan testing to verify the reliability of a system is costly and takes a lot of time. Therefore in this paper, it was demonstrated that the most critical item of a bladder type accumulator is the bladder. Fatigue life is sensitive to temperature and pressure, with temperature having more impact. The fatigue life of the bladder was estimated to be 18,140 hr through fatigue analysis, which satisfies the required life expectancy of 10,000 hr.

Development of a Fatigue Analysis Software System (피로해석시스템 개발)

  • Choi, B.I.;Lee, H.J.;Han, S.W.;Kim, J.Y.;Hwang, K.H.;Kang, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.120-125
    • /
    • 2001
  • A general purpose fatigue analysis software to predict fatigue lives of mechanical components and structures was developed. This software has some characteristic features including functions of searching weak regions on the free surface in order to reduce computing time significantly, a database of fatigue properties for various materials. and an expert system which can assist any users to get more proper results. This software can be used in the environment consists of commercial finite element packages. Using the software developed fatigue analyses for a SAE keyhole specimen and an automobile knuckle were carried out. It was observed that the results were agree well with those from commercial packages.

  • PDF

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.

A Study on Load Spectrum for Fatigue Analysis of Helicopter Rotor Blades (헬리콥터 로터 블레이드의 피로해석을 위한 하중 스펙트럼연구)

  • Oh, Man-Seok;Kim, Hyun-Duk;Kee, Young-Jung;Park, Jung-Sun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.15-23
    • /
    • 2007
  • In this paper, we deducted the missions with respect to Korea utility helicopter (KUH) and consist of the scenarios which describe proper purpose of KUH. And so developed fatigue load spectrum of KUH by applying Helix that is fatigue load spectrum for blade of articulated helicopter rotor system. The developed load spectrum is applied to fatigue analysis of blade by modeled finite element with stress-life method (S-N). And we compared the result of fatigue analysis to prior to Helix for the sake of verifying the load spectrum that we generated.

  • PDF

A Behavior Analysis of HSR Concrete Slab Track under Variety of Rail Pad Static Stiffness on Fatigue Effect (피로효과를 고려한 레일패드의 정적스프링계수 변화에 따른 콘크리트 슬래브 제도의 거동분석)

  • Park, Yong-Gul;Kang, Kee-Dong;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.499-505
    • /
    • 2007
  • The major effective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect (hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete stab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration. The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

A numerical study on the fatigue evaluation of mark-III LNG primary barrier (수치해석을 이용한 Mark-III LNG 1차 방벽에 대한 피로 평가)

  • Kwon, Sun-Beom;Kim, Myung-Sung;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.337-344
    • /
    • 2017
  • The demand of liquified natural gas is increasing due to environmental issues. This reason has resulted in increasing the capacity of liquified natural gas cargo tank. The Mark-III type primary barrier directly contacts liquified natural gas. Also, the primary barrier is under various loading conditions such as weight of liquified natural gas and sloshing loads. During a ship operation, various loads can cause fatigue failure. Therefore, the fatigue life prediction should be evaluated to prevent leakage of liquified natural gas. In the present study, the fatigue analysis of insulation system including primary barrier is performed using a finite element model. The fatigue life of primary barrier is carried out using a numerical study. The value of principle stress and the location of maximum principle stress range are calculated, and the fatigue life is evaluated. In addition, the effects on the insulation panel status and the arrangement of knot or corrugation are analyzed by comparing the fatigue life of various models. The insulation system which has best structural performance of primary barrier was selected to ensure structural integrity in fatigue assessment. These results can be used as a design guideline and a fundamental study for the fatigue assessment of primary barrier.

Development of Integrated Design System for Mechanical Rubber Components (고무류 기계부품 통합설계시스템 개발)

  • Woo, Chang-Su;Kim, Wan-Doo;Kim, Young-Gil;Shin, Wae-Gi;Lee, Seong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1045-1050
    • /
    • 2010
  • Fatigue analysis and lifetime evaluation are very important in design procedure for assuring the safety and reliability of rubber components for mechanical systems. Till recently, the technology for the design, analysis, and evaluation of rubber products was required to manufacture rubber products with high quality, fidelity, and reliability. However, in the rubber-manufacturing companies in Korea, the processes of compound mixing, manufacturing of rubber products, and improvement of rubber properties are based on the trial-and-error method and experience. The objectives of this study are to establish methods for testing rubber materials, to develop a database of the properties of rubber materials, to evaluate the performance of rubber components, and to develop a system for predicting fatigue life. A method to predict fatigue-life of rubber components was proposed; in this method, the finite-element analysis and fatigue damage parameter as determined from a fatigue test are incorporated.

Structural Stability Analysis of Medical Waste Sterilization Shredder (의료폐기물 멸균분쇄용 파쇄기의 구조적 안정성 분석)

  • Azad, Muhammad Muzammil;Kim, Dohoon;Khalid, Salman;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.409-415
    • /
    • 2021
  • Medical waste management is becoming increasingly important, specifically in light of the current COVID-19 pandemic, as hospitals, clinics, quarantine centers, and medical research institutes are generating tons of medical waste every day. Previously, a traditional incineration process was utilized for managing medical waste, but the lack of landfill sites, and accompanying environmental concerns endanger public health. Consequently, an innovative sterilization shredding system was developed to resolve this problem. In this research, we focused on the design and numerical analysis of a shredding system for hazardous and infectious medical waste, to establish its operational performance. The shredding machine's components were modeled in a CAD application, and finite element analysis (FEA) was conducted using ABAQUS software. Static, fatigue, and dynamic loading conditions were used to analyze the structural stability of the cutting blade. The blade geometry proved to be effective based on the cutting force applied to shred medical waste. The dynamic stability of the structure was verified using modal analysis. Furthermore, an S-N curve was generated using a high cycle fatigue study, to predict the expected life of the cutting blade. Resultantly, an appropriate shredder system was devised to link with a sterilization unit, which could be beneficial in reducing the volume of medical waste and disposal time, thereof, thus eliminating environmental issues, and potential health hazards.

Thermal Cycling Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더 접합부의 열사이클링 해석)

  • 유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on system board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. The creep life was estimated the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life was obtained at the thermal cycling test condition from $-65^{\circ}C$ to $150^{\circ}C$. It was increased about 3.5 times in comparison with that from $0^{\circ}C$ to $100^{\circ}C$. At the same conditions, the fatigue life of SMD structure as the change of pad structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF