• Title/Summary/Keyword: 피로손상도

Search Result 598, Processing Time 0.022 seconds

Estimating Fatigue Life of APD Electronic Equipment for Activation of a Spaceborne X-band 2-axis Antenna (2축 짐벌식 X-band 안테나 구동용 전장품 APD 제어보드의 피로수명 평가)

  • Jeon, Young-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • While a satellite is carried into orbit by a launch vehicle, it is exposed to the severe launch environment with random vibrations and shock. Accordingly, these vibration sources affect electronic equipment, particularly the printed circuit board (PCB) in the satellite. When the launch load impacts the PCB, it causes negative behavior. This causes perpendicular bending around the boundary of fixation points that finally leads to the failure of solder joints, lead wires, and PCB cracks. To overcome these issues, the electronic equipment design must meet reliability requirements. In this paper, Steinberg's method is used to derive allowable and maximum deflection to verify design from a life perspective concerning the control board of the Antenna Pointing Driver (APD) mounted on KOMPSAT-3.

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.

FEM Analysis on the Strength Safety of a LPG Cylinder (LPG용기의 강도 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.55-59
    • /
    • 2007
  • This paper presents the strength safety of a LPG cylinder, which is fabricated by a steel sheet forming and a welding technology. The strength safety of a cylinder is guaranteed by analyzing a stress distribution of a LPG cylinder structure using a finite element method. The FEM computed results indicate that the hydraulic test gas pressure of $31kg/cm^2$ generates a concentrated local stress near the upper round end plate, which exceeds the yield strength of a LPG cylinder. Thus, the current hydraulic test pressure may be rechecked and revised because this pressure increases the fatigue failure and decreases the lift of the pressure vessel. The normal operation and sealing gas pressures such as $9kg/cm^2\;and\;18.6kg/cm^2$ are relatively safe for a steel LPG cylinder.

  • PDF

Laboratory Performance Evaluation of High Modulus Asphalt Mixes for Long-Life Asphalt Pavements (장수명 아스팔트 포장용 고강성 혼합물의 실내 공용성 평가)

  • Kang, Min Gyun;Lee, Jung Hun;Lee, Hyun Jong;Choi, Ji Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.73-79
    • /
    • 2006
  • A major purpose of this study is to develop high modulus asphalt mixtures for perpetual asphalt pavements which can save maintenance cost by increasing the design and performance periods of the pavements. Various physical and mechanical laboratory tests are performed for the high modulus asphalt binder developed in this study. The test results show that the properties of the high modulus binder are similar to those of the French high modulus binders. In addition to the binder tests, various performance tests are conducted for the high modulus and conventional mixtures. The dynamic modulus test results indicate that the dynamic modulus values of the high modulus mixtures are higher than those of the conventional mixtures by 10~15% at $5^{\circ}C$, 20~25% at $15^{\circ}C$ and 100% at $30^{\circ}C$. It is observed from the performance tests that the high modulus mixtures yield better fatigue, rutting and moisture damage performance than the conventional mixtures.

Acoustic Emission Monitoring of Incipient in Journal Bearings - Part I : Detectability and measurement for bearing damages (음향방출을 이용한 저어널 베어링의 조기파손감지(I) - 베어링 손상 형태별 감지능력 및 측정기술 -)

  • Yoon, Dong-Jin;Kwon, Oh-Yang;Chung, Min-Hwa;Kim, Kyung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • In contrast to the machineries using rolling element bearings, systems with journal bearings generally operate in large scale and under severe loading condition such as steam generator turbines and internal combustion engines. Failure of the bearings in these machineries can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is applied to the detection of incipient failure caused by several types of abnormal operating condition most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as hard particles in the lubrication layer, insufficient lubrication, and metallic contact in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings.

  • PDF

Guideline for the Diagnose of Geotechnical Structure (Underground Oil Storage Cavern) using a Microseismic Monitoring System (음향미소진동기반 모니터링 시스템을 이용한 지반구조물(유류 지하저장시설) 진단평가 가이드라인)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.293-303
    • /
    • 2018
  • Monitoring is the act of collecting and analyzing accurate engineering information using various methods and instruments. The purposes of the monitoring are design verification, construction management, quality control, safety management, and diagnose of structure etc.. The diagnose evaluation of the geotechnical structures corresponds to the confirmation of the structural performance. It is aimed to judge the soundness of geotechnical structures considering the degree of damage due to the environmental change and elapsed time. Recently, microseismicity, which is widely known in Korea, can be used for safety management and diagnoses of structure as it detects the micro-damage without disturbance of the structure. This report provides guideline on the procedure for assessing an underground oil storage cavern using microseismic monitoring techniques. Guidelines cover the selection of monitoring systems, sensor array, sensor installation and operation of systems, and interpretation.

Evaluation of Physical and Mechanical Characteristics of Korean Epoxy Asphalt Mixtures (국산 에폭시 아스팔트 혼합물의 물리.역학적 특성 평가)

  • Kim, Byung-Hun;Baek, Jong-Eun;Lee, Hyun-Jong;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • This study evaluated the performance of Korean epoxy asphalt mixtures using several laboratory tests. Four types of epoxy asphalt mixtures were manufactured based on 13mm dense graded asphalt mixtures: three Korean and one Japanese epoxy asphalt mixtures where 20% or 40% of asphalt binder was replaced by epoxy resins. Curing time was determined as 3 and 6 hours for the mixtures containing 40% and 20% of epoxy resins, respectively. From the laboratory tests including wheel tracking, indirect tension fatigue, bending beam, and moisture susceptibility tests, it was concluded that the epoxy asphalt mixtures had superior performance than conventional asphalt mixtures except moisture susceptibility. Also, the performance of the Korean epoxy asphalt mixtures was comparable to the Japanese mixtures. Thermal coefficient, bond strength, and indirect tension tests were conducted to examine the applicability of the Korean epoxy asphalt mixtures to concrete repair. Its adhesion was strong enough to be bonded to surrounding concrete materials and its tensile strength was comparable to the concrete, but thermal expansion coefficient was 5 times greater than the surrounding concrete.

Estimation of Slab Response of Plate Girder Bridge in Traffic-Induced Vibration by Three-Dimensional Analysis (삼차원 해석에 의한 강합성교 바닥판의 교통유발진동 응답 평가)

  • Kim, Chul Woo;Kawatani, Mitsuo;Lee, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.263-277
    • /
    • 1998
  • Recently, it is frequently reported that fatigue damages of deck slabs and floor systems of highway bridges occur under the conditions of increasing weight and traffic of heavy vehicles. These troubles are affected by dynamic wheel load of heavy vehicles running on roadway surface roughness with bump at expansion joint. It is required that this kind of traffic-induced vibration of highway bridges must be analyzed by using three-dimensional models of bridge and vehicle. In this study, the three-dimensional dynamic analysis is carried out, and dynamic responses of deck slab and wheel loads of moving vehicle are estimated according to different vehicle speeds and bump heights. Analytical responses of bridge deck slab are compared with experimental ones which were measured at Umeda entrance bridge of Hanshin Expressway in Osaka.

  • PDF

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.