• Title/Summary/Keyword: 피로내구해석

Search Result 149, Processing Time 0.021 seconds

Structural Analysis on Durability of Forklift due to Opening and Closing Between Forks (개폐에 따른 지게차 포크의 내구성에 대한 구조해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2013
  • Stress and deformation on forklift happened at loading, unloading or moving freight are studied by structural and fatigue analysis in this study. As model 1 as closing type between forks has lower stress and stain than model 2 at opening type, model 1 has more durability than model 2. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' with the severest change of load at model 1 and 2, maximum life is shown with Cycle. Minimum damage with 854 at model 2 becomes much higher than model 1. As the gap between forks becomes open, the damage probability becomes higher. The structural result of this study can be effectively utilized with the safe and stable design of forklift by investigating prevention and durability against its damage.

Evaluation of Fatigue Endurance on Expansion Joint Manufactured Fe-Mn Damping Alloy (Fe-Mn 제진 금속을 적용한 신축이음장치의 피로 내구성 평가)

  • Kim, Ki-Ik;Kim, Young-Jin;Ahn, Dong-Geun;Kim, Cheol-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.483-489
    • /
    • 2009
  • The endurance of expansion joint manufactured the Fe-Mn damping alloy reducing noise and vibration is analyzed into FEM (Finite Element Method) and fatigue test. The fatigue test have been performed using the expansion joint manufactured Fe-Mn damping alloy and the hydraulic actuator (25tonf). And the results of fatigue test show that the maximum strength is 237.6 MPa. Also that is 56.6 percent of Fe-Mn damping alloy yield strength (420 MPa). The loading plate size is prepared $57.7cm{\times}23.1cm$ and the loading plate's set position is located on expansion joint. The expansion joint manufactured the Fe-Mn damping alloy had not presented breaking behavior against 2,000,000 times fatigue test and identified the fatigue endurance.

The Development of Life Evaluation Program for LNG Storage Tank considering Fatigue and Durability (피로 및 내구성을 고려한 LNG 저장탱크의 수명평가 프로그램 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • The LNG storage tank as core facility of LNG industry is mainly composed of the inner tank of nikel 9% steel and the outer tank of prestressed concrete. To respond proactively increased risk of structure performance deterioration due to fatigue of the inner tank and durability reduction of the outer tank, life evaluation program for LNG storage tank is needed. In this study, life evaluation program for LNG storage tank was developed to assess fatigue of the inner tank and durability(carbonation and chloride attack) of the outer tank. By defining the main three scenarios in the inner tank, the fatigue life analysis is conducted from structural analysis and Miner's damage rule. Carbonation progress of the outer tank is predicted according to thickness of cover concrete by using carbon dioxide contents and data of penetration depth. To consider a variety of input conditions and a reliability in results of chloride attack, the evaluation of choride attack for the outer tank is constructed through Life-365 program of open source.

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

Computational Analysis of Bearing Screw Used in Lead Screw (리드스크루에 사용되는 베어링 스크루의 전산내구해석)

  • Kim, Min-Gun;Cho, Seok-Swoo;Kim, Dong-Youl;Kim, Yo-Seb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1557-1562
    • /
    • 2011
  • In order to assess the stiffness of bearing screw used for lead screw, finite element analysis on stress and fatigue life of bearing screw has been performed. Based on these analysis, fatigue life dominant model of bearing screw was proposed. This improved model introduces a fillet to release the concentrated stress generated in the vicinity of bearing screw hole. This paper also considered the strength suitability when the bearing screw manufactured in W company was applied to X-ray CT.

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

A Study on Structural Durability due to the Configuration of Ripper at Excavator (굴착기에서의 리퍼의 형상에 따른 구조적 내구성 연구)

  • Kang, Min-Jae;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • In this study, two models due to the configuration of ripper at excavator are investigated by structural and fatigue analyses. The maximum stress and deformation are happened at the axis connected with the body of working device and the direct working part respectively. Model 1 is thought to have more structural durability than model 2. Fatigue life or damage in case of 'SAE bracket history' whose load change is most severest among non-uniform fatigue loads is shown to become most unstable. But life or damage in case of 'Sample history' whose load change is slowest among non-uniform fatigue loads is shown to become most stable. These study results can be effectively utilized with the design of ripper at excavator by anticipating and investigating prevention and durability against its fatigue damage.

Durability Design of Composite Piston in Marine Diesel Engines (박용 디젤엔진용 분리형 피스톤의 내구설계)

  • Son, Jung-Ho;Ha, Man-Yeong;Ahn, Sung-Chan;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.651-657
    • /
    • 2010
  • A composite piston with a crown made of steel and a skirt made of NCI is used in a marine diesel engine, which has a maximum firing pressure of over 180 bar and a high thermal load. In the fatigue design of the composite piston, the fatigue is influenced by factors such as the load type, surface roughness, and temperature; further, the distribution ratio of the firing force from the crown to the skirt is important for optimizing the design of the crown and skirt. In this study, the stress gradient method was used to consider the effect of the load type. The temperature field on the piston was predicted by cocktail-shaking cooling analysis, and influence of high temperature on fatigue strength was investigated. The load transfer ratio and contact pressure were optimized by design of the surface shape and accurate tolerance analysis. Finally, the cooling performance and durability design of the composite piston were verified by performing a long-term prototype test.

A Study on Durability of Automotive Propeller Shaft by Fatigue and Vibration (피로 및 진동에 의한 자동차 추진축의 내구성 연구)

  • Cho, Jae-Ung;Kim, Sei-Hwan;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1495-1501
    • /
    • 2011
  • Fatigue life and vibration can be analyzed at automotive propeller shaft during driving in this study. The york part is shown with the maximum equivalent stress and displacement of $1.3177{\times}10^3$Pa and $3.6148{\times}10^{-4}$m. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and Sample history. There are the most frequency as 80% in case of 'SAE bracket and the least frequency as 5% in case of Sample history'. Maximum amplitude displacement is 0.00261m at 58 Hz at forced vibration. As the result of this study is applied by the propeller shaf, the prevention on fatigue damage and the durability are predicted.

A Convergence Study through Durability Analysis due to the Shaft Length of Automotive Constant Velocity Joint (자동차 등속 조인트 샤프트 길이에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.179-184
    • /
    • 2018
  • The driving methods of car are front wheel drive, rear wheel drive and four wheel drive. At driving methods, constant velocity joint is the most important part at carrying out two functions for converting to the direction which the driver wants and transferring the power to wheels. At driving on the road, the impact can be applied to the parts transmitting power according to the state of road surface. In this study, each models of three constant velocity joints whose shaft length are different respectively were modelled with CATIA and the structural and fatigue analyses were carried out by using ANSYS. This study result is thought to be the useful material at designing the constant velocity joint with the durability against impact. And it is possible to be grafted onto the convergence technique at the design of constant velocity joint and show the esthetic sense.