• Title/Summary/Keyword: 피로강도해석법

Search Result 62, Processing Time 0.026 seconds

Fatigue Strength Analysis of Pontoon Type VLFS Using Spectral Method (통계해석법에 의한 폰툰식 VLFS의 피로강도해석)

  • Park, Seong-Whan;Han, Jeong-Woo;Han, Seung-Ho;Ha, Tae-Bum;Lee, Hong-Gu;Hong, Sa-Young;Kim, Byoung-Wan;Kyoung, Jo-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.351-361
    • /
    • 2006
  • The fatigue strength analysis of VLFS is carried out by using a 3-dimensional plate finite element model with a zooming technology which performs the modeling of wide portions of the structure by a coarse mesh but the concerned parts by a very fine mesh of t by t level. And a stepwise substructure modeling technique for global loading conditions is applied which uses the motion response of the global structure from 2-D plate hydroelastic analysis as the enforcing nodal displacements of the concern 3-D structural zooming model. Seven incident wave angles and whole ranges of frequency domains of wave spectrum are considered. In order to consider the effect of breakwater, the modified JONSWAP wave spectrum is used. Applying the wave data of installation region, the longterm spectrum analysis is done based on stochastic process and the fatigue life of the structure is estimated. Finally some design considerations from the view point of fatigue strength analysis of VLFS are discussed.

Fatigue Behavior Analysis of Welded Rod/Knuckle Assembly for Hydraulic Cylinder (용접이음 된 유압 실린더용 로드/너클 조립체의 피로거동 해석)

  • Rhee, Hwanwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.93-99
    • /
    • 2013
  • Parts and structures such as piston rod and knuckle joint for the use of hydraulic cylinder are often welded together in some fashion, usually due to cost and process effectiveness. Welding strongly affects the material by the process of heating and subsequent cooling as well as by the fusion process with additional filler material. Furthermore, a weld is usually far from being perfect, containing inclusions, pores, cavities, undercuts etc. As a consequence, fatigue failures appear in welded structures mostly at the welds rather than in the base metal, even if the latter contains notches. For this reason, fatigue analyses are of high practical interest for all welded structures under the action of cyclic loads. This paper describes the influence of welding parameters, material combinations and heat treatment on the fatigue behavior of welded cylinder rod. In addition, statistical characterization of stress-life response in weldment of hydraulic cylinder rod are presented.

Design of Shear connection in Full-Depth Precast Concrete Deck Bridge (프리캐스트 콘크리트 바닥판 교량의 전단연결부 설계)

  • Chang, Sung Pil;Shim, Chang Su;Kim, Jong Hee;Kim, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.759-767
    • /
    • 1998
  • Full-depth precast concrete deck bridge has shear pockets for shear connectors that give composite action with steel girder. Strength and shear stiffness of shear connection that is needed to design shear connectors in case that shear pockets are filled with nonshrink mortar are investigated. In case that simple span full-depth precast concrete deck bridge is designed by allowable stress design, distribution of shear connector is suggested and details of precast panel that is placed on the support are proposed. Appropriate distribution of shear connectors in strength design and fatigue design is investigated through parameter analyses using partial interaction theory. The effects of nonshrink mortar strength is studied using the results of experiments and analyses and adequate strength is proposed.

  • PDF

A Study on the Fatigue Behavior of ARALL and Manufacturing of ARALL Materials (ARALL재의 개발과 이의 피로파괴거동에 관한 연구)

  • Jang, Jeong-Won;Sohn, Se-Won;Lee, Doo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.13-18
    • /
    • 1999
  • 섬유강화금속적층재(Fiber Reinforced Metal Laminates. FRMLs)는 고강도금속과 섬유강화복합재료(Fiber Reinforced Composite Materials)를 적층한 새로운 종류의 하이브리드 재료이다. 국산 아라미드 섬유인 헤라크론(Heracron, 코오롱)과 국내 복합재료 제작기술(한국화이바)을 사용하여 섬유강화금속적층재를 제작하고, 이를 HERALL(Heracron Reinforced Aluminum Laminate)이라 명명하였다. HERALL(Heracron Reinforced Aluminum Laminate)의 피로균열성장특성 및 피로균열진전 방해기구를 ARALL(Aramid-fiber Reinforced Aluminum alloy Laminates) 및 Al 2024-T3과 비교해석하였다. HERALL과 ARALL은 균열진전을 저지하는 아라미드 섬유로 인해 뛰어난 피로균열성장특성 및 피로저항성을 보여주었다. 아라미드 섬유의 균열브리드징으로 인한 $K_{max}$의 감소량과 Al 2024-T3의 균열닫힘으로 인한 $K_{max}$의 증가량을 구할 수 있는 응력-COD법을 사용하여 실제로 균열성장에 영향을 준 유효응력확대계수범위를 측정하였다. 균열선단으로부터 균열을 가공하면서 COD 변화량을 측정하여 균열브리징 영역을 구하였다.

  • PDF

Fatigue Analysis of Welded Toe of Wind Turbine Tower Access Door (Wind Turbine Tower의 Door 용접부에 대한 피로 강도 연구)

  • Han Dong-Young;Koh Jang-Wook;Choi Won-Ho;Lee Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.72-75
    • /
    • 2005
  • Recently, as the global warming by fossil fuels become social issues. the interest of renewable energy producing system is increasing rapidly. Among these, wind turbines are most highlighted because of its economic competitiveness. The tower occupying about $20\%$ of overall turbine costs, is one of the main components of wind turbine. Tower access door located to base part of the tower, is used to enter the tower. This is the main structural weak point because of door hole, weldment, etc. In this study, by FEM, we retrieved the maximum van Mises stress at door location and carried out fatigue analysis using stresses at weld toe locations of tower access door part.

  • PDF

Evaluation of Fatigue-Strength-Reduction Factor for SiC Ceramic Substrate (SiC 세라믹 담체에 대한 피로강도저하계수의 평가)

  • Baek, Seok-Heum;Cho, Seok-Swoo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.989-992
    • /
    • 2011
  • 삼원 촉매는 주로 코제라이트 세라믹으로 제작되는 다공성 부품이다. 그러나 코제라이트 세라믹은 열적충격온도가 낮아 엔진의 혼합기가 농후한 경우 삼원촉매의 열적 내구성이 급격히 떨어져 내구 수명을 제대로 만족시키지 못하는 차량이 급격히 증가하고 있다. 따라서 본 논문은 유한요소법으로 구한 SiC 세라믹 재료의 등가 물성치를 기초로 SiC 세라믹 촉매 담체의 기계적 물성치를 유한요소해석용시험편으로 구한 뒤 SiC 세라믹 촉매담체가 실차에 설치될 경우의 열피로 성능에 대하여 평가하였다.

  • PDF

FEM Analysis on the Strength Safety of a LPG Cylinder (LPG용기의 강도 안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.55-59
    • /
    • 2007
  • This paper presents the strength safety of a LPG cylinder, which is fabricated by a steel sheet forming and a welding technology. The strength safety of a cylinder is guaranteed by analyzing a stress distribution of a LPG cylinder structure using a finite element method. The FEM computed results indicate that the hydraulic test gas pressure of $31kg/cm^2$ generates a concentrated local stress near the upper round end plate, which exceeds the yield strength of a LPG cylinder. Thus, the current hydraulic test pressure may be rechecked and revised because this pressure increases the fatigue failure and decreases the lift of the pressure vessel. The normal operation and sealing gas pressures such as $9kg/cm^2\;and\;18.6kg/cm^2$ are relatively safe for a steel LPG cylinder.

  • PDF

A Study on Reliability Design of Fracture Mechanics Method Using FEM (유한요소법을 이용한 파괴 역학적 방법의 신뢰성설계기술에 관한 연구)

  • Baik, Seung-Yeb;Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4398-4404
    • /
    • 2015
  • Stainless steel sheets are widely used as the structural material for dynamic machine structures, These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding, For fatigue design of gas welded joints such as various type joint. It is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. Thus in this paper, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, ${\Delta}P-N_f$ curves were rearranged in the ${\Delta}{\sigma}-N_f$ relation with the hot spot stresses at the gas welded joints. Using these results, the accelerated life test(ALT) is conducted. From the experiment results, an life prediction model is derived and factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Reliability Analysis in Fatigue Strength of Connecting Rod (커넥팅 로드의 피로강도에 대한 신뢰성 해석)

  • Kim, Cheol-Su;Lee, Jun-Hyeong;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1651-1658
    • /
    • 2001
  • It is necessary to evaluate fatigue strength and reliability of the connecting rod which is core part in automotive engine to assure the high level of durability of automobile. For this purpose, the loading conditions in automotive engine is obtained by the dynamic analysis. Based on these results, the critical section was identified by the finite element analysis. The fatigue strength under constant amplitude was evaluated and the mean of the fatigue limit at R = -2.27 derived from the staircase method was 311.2MPa. And the failure probability( F$\sub$p/ ) derived from the strength-stress interference model is 0.0003% at the 99.99% confidence level and the mean factor of safety was 4.2.

Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves (불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석)

  • Kim, Seungjun;Won, Deok Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • As well as the strength check, fatigue life check is also mainly required for designing mooring lines of the floating structures. In general, forces which induce dynamic structural response significantly affect to fatigue design of the mooring lines. So, waves are mainly considered as the governing loading for fatigue design of the mooring lines. In this study, characteristics of the fatigue damage of the mooring lines for submerged floating tunnels (SFT) under irregular waves are investigated. For this study time domain hydrodynamic analysis is used to obtain motion of the tunnel and tension and stresses of the mooring lines under the specific environmental conditions. Also, the Rainflow-counting method, the Palmgren-Miner's rule, and S-N curves for floating offshore structures presented by DNV recommendation is applied to calculate the fatigue damage due to the fluctuating stresses. Referring to the design plactice of the tendon pipes for TLP (tension-leg platform), which is very similar structural system to SFT, it is assumed that a 100 year return period wave attacks the SFT systems during 48 hours and the fatigue damages due to the environmental loading are calculated. Following the analysis sequence, the effects of the tunnel draft, spacing and initial inclination angle of the mooring lines on the fatigue damage under the specific environmental loadings are investigated.