• Title/Summary/Keyword: 피드 포워드 컨트롤

Search Result 2, Processing Time 0.014 seconds

A Control System Using Butterworth Filter for Loss-in-Weight Feeders (버터워스 필터를 이용한 감량식 정량연속공급장치 제어 시스템)

  • Kang, In-Jae;Moon, Sung-Min;Kwon, Joon Ho;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.905-911
    • /
    • 2014
  • A Loss-in-Weight (LIW) feeder, a type of automated measuring device, is a continuous feeder used in many mass production industries. Due to its versatility, there have been constant demands of LIW feeders in food production supply lines as well as chemical and pharmaceutical industries. In this paper, the process of designing a LIW feeder system with better performance will be examined and compared with commercial products. This system is characterized by low pass Butterworth filter and feed forward PI control. The filter is for noise disposal caused by dynamic condition of a LIW feeder. The feed forward PI control, based on linearity feature of feeders, is adequate for stable driving of the system. At the end, a possible evaluation method of LIW system will be proposed to verify the specific achievement of this paper.

A Multi-Channel Gigabit CMOS Optical Transmitter Circuit (멀티채널 기가비트 CMOS 광 송신기 회로)

  • Tak, Ji-Young;Kim, Hye-Won;Shin, Ji-Hye;Lee, Jin-Ju;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.52-57
    • /
    • 2011
  • This paper presents a 4-channel optical transmitter circuit realized in a $0.18{\mu}m$ CMOS technology for high-speed digital interface. Particularly, the VCSEL driver exploits the feed-forward technique, and the pre-amplifier employs the pulse-width control. Thus, the optical transmitter operates at the bias current up to 4mA and the modulation current from $2{\sim}8mA_{pp}$. with the pulse-width distortion compensated effectively. The 4-channel optical transmitter array chip occupies the area of $1.0{\times}1.7mm^2$ and dissipates 35mW per channel at maximum current operations from a single 1.8V supply.