• Title/Summary/Keyword: 피드쓰루

Search Result 4, Processing Time 0.018 seconds

A Low Power SDRAM Output Buffer with Minimized Power Line Noise and Feedthrough Current (최소화된 Power line noise와 Feedthrough current를 갖는 저 전력 SDRAM Output Buffer)

  • Ryu, Jae-Hui
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.42-45
    • /
    • 2002
  • A low power SDRAM output buffer with reduced power line noise and feedthrough current is presented. In multi I/O SDRAM output buffer, feedthrough current as well as the corresponding power dissipation are reduced utilizing proposed undershoot protection circuits. Ground bounce is minimized by the pull down driver using intelligent feedback scheme. Ground bounce noise is reduced by 66.3% and instantaneous and average power are reduced by 27.5% and 11.4%, respectively.

New current memory cell with clock-feedthrough reduction scheme (클럭-피드쓰루를 개선한 새로운 전류 기억 소자)

  • 민병무;김재완;김수원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.30-34
    • /
    • 1997
  • An improved clock-feedthrough compensation scheme for switche dcurrent system is proposed. Both the signal dependent and the constant clock-feedthrough terms are cancelled by using both NMOS and PMOS current samplers and by adopting a source replication technique. The proposed current memory cell was fabricated with 0.6$\mu$m CMOS process. Both experimental and theoretical results on clock-feedthrough error reveal substantial reduction over the existing compensation schemes.

  • PDF

Development of a SHA with 100 MS/s for High-Speed ADC Circuits (고속 ADC 회로를 위한 100 MS/s의 샘플링의 SHA 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.295-301
    • /
    • 2012
  • In this article, we have designed SHA, which has 12 Bit resolution at an input signal range of 1 $V_{pp}$ and operates at a sampling speed of 100 MS/s in order to use at front of high speed ADC. SFDR(Spurious Free Dynamic Range) of the proposed system drops to approximately 66.3 dB resolution when the input frequency is 5 MHz, and the sampling frequency is 100 MHz, however, the circuit without a feedthrough has 12 bit resolution with approximately 73 dB.