• Title/Summary/Keyword: 피드백제어

Search Result 655, Processing Time 0.022 seconds

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.

Studies in Biomechanical Properties on Brain-spinal Cord Response Mechanism by Human Posture Control Ability (자세조절능력에 따른 뇌-척수 신경 반응기전의 역학적 해석)

  • Yoo, Kyoung-Seok
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.6
    • /
    • pp.449-459
    • /
    • 2019
  • The purpose of this study is to identify how postural mechanics affects postural control on balance and stability by using frequency analysis technique from the kinematic data acquired during the one leg standing posture. For this purpose, the experimental group consisted of two groups, the normal group (n=6) and the national Gymnastics group (n=6). Displacement data of CoP were analyzed by frequency analysis of rambling (RM) and trembling (TR) by FFT signal processing. As a results, there was a significant difference in evaluating the stabilization index between the two groups with the eyes open and closed one leg stnading (p <.05). The cause of the difference was found to be the output of the maximum amplitude of RM (f1) and TR (f2) (p <.05). In particular, in the low frequency RM of 8-9 Hz, which is a natural frequency of signal wave involved in postural feedback feedback, the main frequency appeared to be performs the exercise mechanism of stable brain posture control. And in the high frequency TM of 120-135 Hz, it is considered that the adaptation of the reflective muscle response is minimized to minimize posture shaking. In conclusion, this study provides evidence for the intrinsic main frequencies according to the postural control ability which affects the CNS in one leg standing.

High Quality Video Streaming System in Ultra-Low Latency over 5G-MEC (5G-MEC 기반 초저지연 고화질 영상 전송 시스템)

  • Kim, Jeongseok;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • The Internet including mobile networks is developing to overcoming the limitation of physical distance and providing or acquiring information from remote locations. However, the systems that use video as primary information require higher bandwidth for recognizing the situation in remote places more accurately through high-quality video as well as lower latency for faster interaction between devices and users. The emergence of the 5th generation mobile network provides features such as high bandwidth and precise location recognition that were not experienced in previous-generation technologies. In addition, the Mobile Edge Computing that minimizes network latency in the mobile network requires a change in the traditional system architecture that was composed of the existing smart device and high availability server system. However, even with 5G and MEC, since there is a limit to overcome the mobile network state fluctuations only by enhancing the network infrastructure, this study proposes a high-definition video streaming system in ultra-low latency based on the SRT protocol that provides Forward Error Correction and Fast Retransmission. The proposed system shows how to deploy software components that are developed in consideration of the nature of 5G and MEC to achieve sub-1 second latency for 4K real-time video streaming. In the last of this paper, we analyze the most significant factor in the entire video transmission process to achieve the lowest possible latency.

A Study on the Conservation of Biodiversity by the Ecological Economic Numerical Model (생태경제수치모형에 의한 생물다양성 보존에 관한 연구)

  • Kim, Byung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.629-637
    • /
    • 2022
  • It is at risk of depletion of biodiversity due to indiscriminate overfishing of ecosystems and destruction of habitats. Intensive fertilizers or development of related facilities to increase agricultural production in poor indigenous areas devastate the soil. Preservation of biodiversity is now emerging as an important issue of global human coexistence. After the Post-2020 GBF Declaration, all governance in agricultural development in indigenous agricultural areas should be supported and promoted as biodiversity conservation measures. A compromise plan to reduce ecosystem development and biodiversity loss can help establish public governance policies. In this paper, a viability kernel used for viable control feedback analysis is introduced to solve conflicting economic and ecological problems in ecosystem conservation, and a mathematical model on biodiversity conservation by the viability kernel is examined. Because all species in the ecosystem are interdependent, if the balance is broken, biodiversity is depleted, which is irreversible and eventually leads to extinction. For sustainable use and harmony of biological resources, a lot of policy consideration is required, such as creative governance that can efficiently protect all species. Subsidies or tax incentives have a direct impact on biodiversity conservation. The recovery of species in a state of decreasing biodiversity can be said to be of great economic value. Biodiversity will allow indigenous producers to be proud of their unique traditional knowledge and have a positive impact on local tourism, thereby enhancing regional identity and greatly contributing to the survival and prosperity of mankind.

Design of ICT based Protected Horticulture for Recovering Natural Disaster (ICT기반 시설원예 재해 경감장치 설계)

  • Lee, Meong-Hun;Yoe, Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.10
    • /
    • pp.373-382
    • /
    • 2016
  • Under the Agricultural technology is influenced from climate that is requisite of seasonal. So this system will cover the problems and develop the agricultural industry as well. So far, the agricultural industry is developing however, it has the points of the weakness because of natural disasters such as wind risk and heavy snow. This paper designs system to change vinyl on the greenhouse. This is a preliminary study for the real-time feedback control of greenhouse. The study developed a wireless IoT sensor system based on authentic technology capacities, to integrate with the protected horticulture Management System. These system was used to evaluate the levels of the snow cover and wind through IoT devices. The existing greenhouse uses the warm water to clear snow or to change methods. This system will recover by changing the vinyl which is covered outside of the greenhouse. The points of the system is changing vinyl to spin pipe. It is contained extra vinyl. The effects of this system are minimized labor protected crops from natural disasters. For this purpose, the study first developed a wireless IoT sensor unit that integrates an MEMS device and wireless communication module. Also, the study developed an operating program that enables real-time response measurement. It will help operational and maintenance greenhouse as a result.