• Title/Summary/Keyword: 피난연결통로

Search Result 14, Processing Time 0.016 seconds

Agent-Based Evacuation Simulations of Road Tunnels in the Event of a Fire (도로터널 화재 시의 행위자 기반 대피 시뮬레이션)

  • Kim, Byungil;Kim, Changyoon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1157-1163
    • /
    • 2015
  • The purpose of this study is to reveal the effects of the number of users and their spatial distribution on the evacuation time in a road tunnel in the event of a fire. An agent-based evacuation model was implemented using Netlogo following the ODD protocol. The proposed model illustrates how the evacuation behavior of one can hinder others across different evacuation environments. Simulations show that evacuation time increases with the number of users when they are randomly located in a road tunnel.

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

A Study on the Behavior of an Existing Tunnel and the Safety Implications on its Facilities from a New Tunnel Blasting (신설 터널 발파 시 기존 터널 거동 및 시설물 안전에 관한 연구)

  • Kim, Sung Hoon;Cho, Woncheol
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.57-64
    • /
    • 2010
  • In this study, the behavior and safety of an existing tunnel and its facilities are investigated when a new tunnel adjacent to the existing tunnel is blasted. The design of the new tunnel puts priority on stability of the tunnel itself over the safety of the facilities which are installed within the existing tunnel such as jet fans. And thus, a detailed consideration on securing the safety of the existing facilities has been insufficient. An analysis on the types of traffic accidents in the last ten years shows that most incidents were due to the driver's improper response in emergency situations and unexpected obstacles. In consideration of this analysis, the safety of the facilities in the existing tunnel was secured by minimizing the charging amount for each hangfire and changing the excavation method of evacuation communication shelters to the large center hole cut blasting method to reduce blasting vibration. For a more quantitative analysis, measurement devices were installed inside the existing tunnel, at houses adjacent to the new tunnel, near jet fans in the existing tunnel. This enabled real time measurement of displacements of the existing tunnel, adjacent houses, and jet fans without interrupting traffic flow. Therefore, the improvements of charging amount for each hangfire, the blasting method, and the measurement method are suggested in this paper to secure the safety of the facilities in the existing tunnel when a new tunnel, located on a large city and adjacent to an existing tunnel, is designed.

  • PDF

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).