• Title/Summary/Keyword: 플립오버

Search Result 4, Processing Time 0.017 seconds

Partial Enhanced Scan Method for Path Delay Fault Testing (경로 지연 고장 테스팅을 위한 부분 확장 주사방법)

  • Kim, Won-Gi;Kim, Myung-Gyun;Kang, Sung-Ho;Han, Gun-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3226-3235
    • /
    • 2000
  • The more complex and larger semiconductor integraed circuits become, the core important delay test becomes which guarantees that semiconductor integrated circuits operate in time. In this paper, we propose a new partial enhanced scan method that can generate test patterns for path delay faults offectively. We implemented a new partial enhanced scan method based on an automatic test pattern generator(ATPG) which uses implication and justification . First. we generate test patterns in the standard scan environment. And if test patterns are not generated regularly in the scan chain, we determine flip-flops which applied enhanced scan flip-flops using the information derived for running an automatic test pattern generator inthe circuti. Determming enhanced scan flip-flops are based on a fault coverage or a hardware overhead. through the expenment for JSCAS 89 benchmark sequential circuits, we compared the fault coverage in the standard scan enviroment and enhance scan environment, partial enhanced scan environment. And we proved the effectiveness of the new partial enhanced scan method by identifying a high fault coverage.

  • PDF

A Study on the Attenuation of Flip-over Vibration in the Flat Blade Windshield Wiper (플랫 블레이드 윈드실드 와이퍼의 역전 진동 저감에 관한 연구)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.974-984
    • /
    • 2012
  • This research introduces a new method to attenuate flip-over vibration generation in the flat blade windshield wiper by adjusting the contact pressure between the windshield glass and the blade. The knocking force in the flip-over action of the blade is decreased by inducing gradual tilting-over along the rubber strip of the blade. This gradual tilting-over is induced by introducing a non-uniform contact pressure distribution between the blade and windshield glass. The contact pressure distribution is adjusted by controlling the unloaded profile of the body spring in the blade using a procedure proposed in a previous study. Two blades, one blade designed to generate a uniform pressure distribution and the other designed to generate non-uniform pressure distribution, are developed using the procedure. Contact pressure distributions of the developed blades are measured using a special device and compared with the intended distributions confirming the similarities between the two groups. Vertical and lateral vibrations of the two blades are measured under realistic operating condition simulated by a wiper test rig. The vertical vibrations of the blade with non-uniform contact pressure are substantially smaller than corresponding vibrations of the blade with uniform contact pressure over the entire rubber strip.

Path Delay Testing for Micropipeline Circuits (마이크로파이프라인 회로를 위한 지연 고장 테스트)

  • Kang, Yong-Seok;Huh, Kyung-Hoi;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.72-84
    • /
    • 2001
  • The timings of all computational elements in the micropipeline circuits are important. The previous researches on path delay testing using scan methods make little account of the characteristic of the path delay tests that the second test pattern must be more controllable. In this paper, a new scan latch is proposed which is suitable to path delay testing of the micropipelines and has small area overhead. Results show that path delay faults in the micropipeline circuits using the new scan are testable robustly and the fault coverage is higher than the previous researches. In addition, the new scan latch for path delay faults testing in the micropipeline circuits can be easily expanded to the applications such as BIST for stuck-at faults.

  • PDF

An Efficient Test Data Compression/Decompression for Low Power Testing (저전력 테스트를 고려한 효율적인 테스트 데이터 압축 방법)

  • Chun Sunghoon;Im Jung-Bin;Kim Gun-Bae;An Jin-Ho;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.73-82
    • /
    • 2005
  • Test data volume and power consumption for scan vectors are two major problems in system-on-a-chip testing. Therefore, this paper proposes a new test data compression/decompression method for low power testing. The method is based on analyzing the factors that influence test parameters: compression ratio, power reduction and hardware overhead. To improve the compression ratio and the power reduction ratio, the proposed method is based on Modified Statistical Coding (MSC), Input Reduction (IR) scheme and the algorithms of reordering scan flip-flops and reordering test pattern sequence in a preprocessing step. Unlike previous approaches using the CSR architecture, the proposed method is to compress original test data, not $T_{diff}$, and decompress the compressed test data without the CSR architecture. Therefore, the proposed method leads to better compression ratio with lower hardware overhead and lower power consumption than previous works. An experimental comparison on ISCAS '89 benchmark circuits validates the proposed method.