• Title/Summary/Keyword: 플렉셔 마운트

Search Result 6, Processing Time 0.029 seconds

Optimal Design of the Flexure Mount for Optical Mirror Using Topology Optimization Considering Thermal Stress Constraint (열응력 제한조건이 고려된 위상최적화 기법을 이용한 광학 미러 플렉셔 마운트 최적설계)

  • Kyoungho, Lee;Joong Seok, Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.561-571
    • /
    • 2022
  • An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. In the assembly, a flexure mount attached to an optical mirror should be flexible in the radial direction, but rigid for the remaining degrees of freedom for supporting the mirror rigidly and suppressing the wavefront error of the optical mirror. This work presents an optimal design of the flexure mount using topology optimization with thermal stress constraint. By simplifying the optical mirror assembly into finite shell elements, topology optimization model was built for efficient design and good machinability. The stress at the boundary between the optical mirror and the mount together with the first natural frequency were applied as constraints for the optimization problem, while the objective function was set to minimize the strain energy. As a result, we obtained the optimal design of the flexure mount yielding the improved wavefront error, proper rigidity, and machinability.

Design of Flexure Mounts for Satellite Primary Mirrors (인공위성 주반사경의 플렉셔 마운트 설계)

  • 엄태경;박강수;조지현;이완술;이준호;윤성기;이응식;우선희;이승훈
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.138-139
    • /
    • 2003
  • 반사경을 지지하는 데에 있어서의 기계적, 열적 변형이 광학 부품에 미치는 영향을 최소화 하도록 광학 요소를 이러한 영향으로부터 차단하는 기계 장치를 플렉셔(flexure)라고 한다. 기계적 영향은 중력, 관성, 진동에 의한 하중 및 조립 시의 오차에 의한 응력 등에 의해 발생하는 변형을 말한다. 또한 열적 영향은 열적 평형 상태와 과도 상태 하에서 주위 환경의 온도변화에 의한 변형을 말한다. 예를 들어 작은 열팽창 계수를 가진 반사경 또는 렌즈와 큰 열팽창 계수를 갖는 지지구조가 어떤 온도 하에서 조립된 후 처음 온도와 다른 온도에 놓이는 경우를 생각해 보자. (중략)

  • PDF

Mount Design for High-Resolution Mirrors (고 분해능 반사경의 마운트 설계)

  • Kim, Kwang-Ro;Lee, Young Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.142-148
    • /
    • 2014
  • The mirror which is considered in designing a MFD is off-axis primary one and its dimension is wide 556mm height 345mm. The MFD(Mirror Fixation Device) load specification is generated for the high resolution mirror. The optical WFEs for unit loads are calculated from mirror sensitivity analysis and they are compared with allocated allowable optical WFE. The parasite load for the MFD is calculated from their comparison. The MFD compliant with the parasite load is designed.

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.