• Title/Summary/Keyword: 플레이트형 흡수기

Search Result 3, Processing Time 0.031 seconds

Experimental Study on Heat Transfer Performance of Plate Type Absorber with Variation of Solution Flow Rate (용액유량에 따른 플레이트 흡수기의 흡수 열전달 특성 실험)

  • Moon, C.G.;Bang, G.S.;Kim, J.D.;Yoon, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1548-1553
    • /
    • 2003
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of development of high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is the most effective to improve the performance of absorber with the largest heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which can increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, horizontal tube bundle type. The size of plate absorbers were made for $0.4m{\times}0.6m$ and the design object of a refrigeration capacity was lRT. In this experiment, three kind plate absorbers which were flat plate, dimple plate and groove plate were used. The results were less than the design object values, that is, the refrigeration capacity was about $0.3{\sim}0.4RT$ and the overall heat transfer coefficient was $500{\sim}600kcal/m^2h^{\circ}C$ at the standard conditions.

  • PDF

Factors influencing primary stability of miniplate anchorage: a three-dimensional finite element analysis (미니플레이트의 골내 고정원 적용 시 초기 안정성에 영향을 주는 요인에 대한 3차원 유한요소법적 연구)

  • Lee, Nam-Ki;Choi, Dong-Soon;Jang, In-San;Cha, Bong-Kuen
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.304-313
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the stress distribution in bone and displacement distribution of the miniscrew according to the length and number of the miniscrews used for the fixation of miniplate, and the direction of orthodontic force. Methods: Four types of finite element models were designed to show various lengths (6 mm, 4 mm) and number (3, 2) of 2 mm diameter miniscrew used for the fixation of six holes for a curvilinear miniplate. A traction force of 4 N was applied at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ to an imaginary axis connecting the two most distal unfixed holes of the miniplate. Results: The smaller the number of the miniscrew and the shorter the length of the miniscrew, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. Most von Mises stress in the bone was absorbed in the cortical portion rather than in the cancellous portion. The more the angle of the applied force to the imaginary axis increased, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. The maximum von Mises stress in the bone and maximum displacement of the miniscrew were measured around the most distal screw-fixed area. Condusions: The results suggest that the miniplate system should be positioned in the rigid cortical bone with 3 miniscrews of 2 mm diameter and 6 mm length, and its imaginary axis placed as parallel as possible to the direction of orthodontic force to obtain good primary stability.