• Title/Summary/Keyword: 플랜트 모델링

Search Result 139, Processing Time 0.034 seconds

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

A Fluid Analysis Study on Centrifugal Pump Performance Improvement by Impeller Modification (원심펌프 회전차 Modification시 성능개선에 관한 유동해석 연구)

  • Lee, A-Yeong;Jang, Hyun-Jun;Lee, Jin-Woo;Cho, Won-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Centrifugal pump is a facility that transfers energy to fluid through centrifugal force, which is usually generated by rotating the impeller at high speed, and is a major process facility used in many LNG production bases such as vaporization seawater pump, industrial water and fire extinguishing pump using seawater. to be. Currently, pumps in LNG plant sites are subject to operating conditions that vary depending on the amount of supply desired by the customer for a long period of time. Pumps in particular occupy a large part of the consumption strategy at the plant site, and if the optimum operation condition is not available, it can incur enormous energy loss in long term plant operation. In order to solve this problem, it is necessary to identify the performance deterioration factor through the flow analysis and the result analysis according to the fluctuations of the pump's operating conditions and to determine the optimal operation efficiency. In order to evaluate operation efficiency through experimental techniques, considerable time and cost are incurred, such as on-site operating conditions and manufacturing of experimental equipment. If the performance of the pump is not suitable for the site, and the performance of the pump needs to be reduced, a method of changing the rotation speed or using a special liquid containing high viscosity or solids is used. Especially, in order to prevent disruptions in the operation of LNG production bases, a technology is required to satisfy the required performance conditions by processing the existing impeller of the pump within a short time. Therefore, in this study, the rotation difference of the pump was applied to the ANSYS CFX program by applying the modified 3D modeling shape. In addition, the results obtained from the flow analysis and the curve fitting toolbox of the MATLAB program were analyzed numerically to verify the outer diameter correction theory.

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.

Determination of Efficient Operating Condition of UV/H2O2 Process Using the OH Radical Scavenging Factor (수산화라디칼 소모인자를 이용한 자외선/과산화수소공정의 효율적인 운전 조건도출)

  • Kim, Seonbaek;Kwon, Minhwan;Yoon, Yeojoon;Jung, Youmi;Hwang, Tae-Mun;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.534-541
    • /
    • 2014
  • This study investigated a method to determine an efficient operating condition for the $UV/H_2O_2$ process. The OH radical scavenging factor is the most important factor to predict the removal efficiency of the target compound and determine the operating condition of the $UV/H_2O_2$ process. To rapidly and simply measure the scavenging factor, Rhodamine B (RhB) was selected as a probe compound. Its reliability was verified by comparing it with a typical probe compound (para-chlorobenzoic acid, pCBA); the difference between RhB and pCBA was only 1.1%. In a prediction test for the removal of Ibuprofen, the RhB method also shows a high reliability with an error rate of about 5% between the experimental result and the model prediction using the measured scavenging factor. In the monitoring result, the scavenging factor in the influent water of the $UV/H_2O_2$ pilot plant was changed up to 200% for about 8 months, suggesting that the required UV dose could be increased about 1.7 times to achieve 90% caffeine removal. These results show the importance of the scavenging factor measurement in the $UV/H_2O_2$ process, and the operating condition could simply be determined from the scavenging factor, absorbance, and information pertaining to the target compound.

A Study for Automotive Lamp Manufacturing System Control Composing Ultra melting Process (초음파 접합 공정을 합성한 자동차용 램프 생산시스템 제어에 관한 연구)

  • Lee, Il-Kwon;Kook, Chang-Ho;Kim, Seung-Chul;Kim, Ki-Jin;Han, Ki-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • The purpose of this paper is to study of the vehicle lamp manufacturing system composing ultrasonic waves connection process. Making lamp assembly plant, it was produced in the separate process as the injection molding, ultrasonic waves bonding, annealing in the constant temperature, lamp assembling and packing. But the improvement method producing the lamp was added with one-step process by one automation technique. As a result, welding with ultrasonic waves process, the method decreased the energy consumption and noise during ultrasonic waves welding. Therefore, this method used the mathematics modeling for checking validity, it selected the stability and suitable controller using transfer function of plant and bode chart. In this study, the $180^{\circ}$ revolution control system to turn injection part upside down was $M_{eq}\;lcos{\theta}(t)$ because of gravity influence. It effected to unstable condition a system. For solving this problem, it aimed the linearization and stabilization of system by elimination $M_{eq}\;lcos{\theta}(t)$ as applying Free-forward control technique.

Preliminary Estimation of Earthquake Losses Based on HAZUS in a Coastal Facility Area with Blocks Applying Site Classification (블록별 부지분류 적용 해안시설 영역에서의 HAZUS 기반 지진피해 추정)

  • Sun, Chang-Guk;Chun, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.10-27
    • /
    • 2014
  • HAZUS-MH is a GIS-based computer program that estimates potential losses from multi-hazard phenomena: earthquakes, floods and hurricanes. With respect to seismic disaster, characteristics of a hypothetical or actual earthquake are entered into HAZUS. Then HAZUS estimates the intensity of ground shaking and calculates the correspondent losses. In this study, HAZUS was used as a part of the preparations of the future seismic events at a coastal plant facility area. To reliably characterize the target facility area, many geotechnical characteristics data were synthesized from the existing site investigation reports. And the buildings and facilities were sorted by analyzing their material and structural characteristics. In particular, the study area was divided into 17 blocks taking into account the situation of both land development and facility distribution. The ground conditions of blocks were categorized according to the site classification scheme for earthquake-resistant design. Moreover, seismic fragility curves of a main facilities were derived based on the numerical modeling and were incorporated into the database in HAZUS. The results estimated in the study area using HAZUS showed various seismic damage and loss potentials depending on site conditions and structural categories. This case study verified the usefulness of the HAZUS for estimating earthquake losses in coastal facility areas.

A Study on the Prevention Effect of Lateral Movement by Finite Element Analysis (유한요소해석에 의한 측방이동 방지효과에 대한 연구)

  • Park, Choon-Sik;Rho, Tae-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.71-82
    • /
    • 2018
  • This study presents a reasonable and economical DCM reinforcement length for the various factors (the embankment height, the distance from the embankment to the underground structure, the depth of the soft ground, and the compression index and the swelling index of the soft ground) that affect the stability of the structure due to lateral movement. Based on these results, we analyzed each factor's degree of influence and figured out which factor influenced the lateral movement most. The cross section of the embankment on the soft ground was modeled by using the Finite Element Program and reinforced with DCM. The results show that the increase rate of the reinforcement length with the increase of the embankment height is about 9~50%, the increase rate of the reinforcement length with the depth of soft ground is about 13~30%, and the increase rate of the reinforcement length with increasing compression index is about 3~25%. In addition, the influence of each factor on each other was analyzed. As a result, among the separation distance, the compressive index and the maximum to minimum slope ratio of the reinforcement length of the embankment height, the separation distance was the largest for the depth of soft ground. As the depth of the soft ground increases, the ratio of the maximum to minimum slope of the reinforcement length according to the embankment height is 3.75, the ratio of the maximum to minimum slope of the reinforcement length according to the spacing distance is 4.3, and the ratio of maximum to minimum slope according to compression index is 2.5. From these results, it is confirmed that the three factors are greatly affected by the depth of soft ground.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Steel Frame Clamp Deformation and Performance Check based on Clamping Orientation (철골용 클램프 시공방향에 따른 변형 및 성능확인)

  • Mo, Seung-Un;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.161-169
    • /
    • 2022
  • The government [3] specifies steel pipe scaffolding as conventional scaffolding and is promoting the installation of system scaffolding, an integrated work platform, and avoidance of the use of steel pipe scaffolding as much as possible. However, in places where equipment cannot enter, such as power plants and plant sites, places the structure is complex, and places where scaffolding cannot be stacked on the ground, there is no choice but to install steel pipe scaffolding. When installing steel pipe scaffolding on an H-beam structure at a high place, the performance of the steel frame clamp is very important in order to form a work space which workers can work safely. In this study, the displacement magnitude and tensile load of members in each installation direction of the clamp for steel frame were verified through performance tests and structural analysis modeling. As a result, it was confirmed that the performance for each installation direction satisfies the safety certification standard tensile load of 10,000N. Although the performance value is satisfactory, deformation of the attachment pressing bolt was verified and was confirmed to have minimal deformation. Thus, to ensure the load is properly to the attachment body, the clamp for a steel frame must be installed in the direction in which the load is transmitted.