• Title/Summary/Keyword: 플랜트배관

Search Result 119, Processing Time 0.02 seconds

A Study on System Stress Analysis of High Temperature Plant Piping with Expansion Joints and Load Hangers (신축이음과 하중행거가 함께 설치된 고온플랜트 배관계의 시스템응력 해석 연구)

  • Park, Do Jun;Yu, Jong Min;Han, Seung Yeon;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.116-124
    • /
    • 2014
  • In the plants operated under high temperature condition, piping system load analysis is often performed to prevent accidents caused by thermal deformation and also to locate inspection prioritity points of the piping system. In this study, piping system stress analysis was performed for a pipe system between the reactors in a process plant. The piping system includes typically installed hangers and expansion joints. In order to evaluate the effects of structural components such as hangers and expansion joints, the case for the expansion joint or the hanger under abnormal operation is considered. By comparison anlaysis results of piping system during normal operation and abnormal operation, the role of each pipe components are studied.

Design Consideration about Large Caliber Piping of Polyethylene Material (폴리에틸렌 소재의 대구경 배관 설계 고찰)

  • Kim, Eung-Soo;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • As the polyethylene of high strength and ductility stabilized chemically has been mass-produced, it is spreading widely as material of industrial piping and water service piping. Recently, High density polyethylene (HDPE) pipe has been used even in water supply system of plant as buried pipe instead of cast iron pipe in domestic, but HDPE pipe has a probability of occurrence of damage if plant design and operating conditions are not considered. As a result of reviewing with respect of system design engineering based on operating conditions and verification test results, the specific design criteria for the use of HDPE piping in fire water supply system need to be established because of the possibility of crack damage due to water hammer.

Analysis of Cost Variation of Piping Equipment Design of a Steel Manufacturing Plant by Simulation (시뮬레이션을 통한 제철플랜트 배관장치 설계비용의 변동 범위 분석)

  • Bae, Kyung-Suk;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-seon;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.4
    • /
    • pp.29-34
    • /
    • 2014
  • In this consideration, this research investigated the piping design items and drew out key design items through interview with experts and surveys to apply them to actual project examples and look into piping design item-specific significance and cost variation ranges. Based on this investigation, the Monte-Carlo simulation was employed herein to analyze the cost variation range for the entire piping design costs with a view to presenting a way to calculate a reasonable bidding price for any similar project and verify the appropriateness of joining a bid.

  • PDF

Identifying Risk Management Locations for Synthetic Natural Gas Plant Using Pipe Stress Analysis and Finite Element Analysis (배관응력해석 및 유한요소해석에 의한 SNG플랜트의 리스크 관리 위치 선정)

  • Erten, Deniz Taygun;Yu, Jong Min;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • While they are becoming more viable, synthetic natural gas (SNG) plants, with their high temperatures and pressures, are still heavily dependent on advancements in the state-of-the-art technologies. However, most of the current work in the literature is focused on optimizing chemical processes and process variables, with little work being done on relevant mechanical damage and maintenance engineering. In this study, a combination of pipe system stress analysis and detailed local stress analysis was implemented to prioritize the inspection locations for main pipes of SNG plant in accordance to ASME B31.3. A pipe system stress analysis was conducted for pre-selecting critical locations by considering design condition and actual operating conditions such as heat-up and cool-down. Identified critical locations were further analyzed using a finite element method to locate specific high-stress points. Resultant stress values met ASME B31.3 code standards for the gasification reactor and lower transition piece (bend Y in Fig.1); however, it is recommended that the vertical displacement of bend Y be restricted more. The results presented here provide valuable information for future risk based maintenance inspection and further safe operation considerations.

Improvement of the Code Classification Structure in Piping Material Management for Petrochemical Plant Projects (석유화학 플랜트의 효율적 배관자재 관리를 위한 코드분류체계 개선)

  • Lee, Jong-Pill;Moon, Yoon-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.11 no.1
    • /
    • pp.39-49
    • /
    • 2015
  • The objective of this study is to improve the classification structure of commodity code for piping material management which is considered as the fundamental of commodity code and piping material management system. It enhances the efficiency of piping material management directly or indirectly affecting the engineering, procurement and construction in a petrochemical plant projects. To establish an improved code classification structure, this study identifies the problems of former code classification structure in details, as well as the characteristics of other domestic and global EPC company's code classification structures and presents the improved direction considering the recently mega-sized and specialized projects. Accordingly, to efficiently enhance piping material management, the improved code classification structures have been derived from defining suitable code classification structure for specific piping component, adding more standard attribute, expanding the number of code digits and classifying code hierarchy. The results of applying the improved classification structure of commodity code to on-going project have led to reduce the rate of rework from 4.98% to 2.48% for developing purchase description and also have saved working time for executing piping design by 3D modeling from 6 months by two persons to 4 months by a person which is decreased 67% consequently. In addition, the structures of pyramid code management have resulted to accumulation and analysis of the various piping data for other disciplines such as procurement and estimation team which require commodity code information through the company's material control system.

  • PDF