• Title/Summary/Keyword: 플래시 램프 열처리

Search Result 2, Processing Time 0.017 seconds

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.

Thermal Deformation of Glass Backplane during Flash Lamp Crystallization Process of Amorphous Silicon (플래시 램프를 이용한 비정질 실리콘 결정화 공정에서의 유리기판 열변형)

  • Kim, Dong-Hyun;Kim, Byung-Kuk;Kim, Hyoung-June;Chung, Ha-Seung;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1025-1032
    • /
    • 2012
  • The flash lamp annealing (FLA) process has been considered highly promising for manufacturing low-temperature polysilicon on large-scale backplanes. Based on a theoretical estimation, this study clarifies the critical mechanisms of glass backplane deformation during the FLA process. A simulation using a commercial FEM code with viscoelastic models shows that the local region, whose temperature is larger than the glass softening point, undergoes permanent structural shrinkage owing to stress relaxation. For larger backplanes (4th Gen), structural shrinkages and gravitational deflection are critical to deformation in the FLA process, resulting in an "M" shape; in smaller backplanes (0th Gen), the latter is negligible, resulting in a "U" shape.