• Title/Summary/Keyword: 플래시메모리 SSD

Search Result 103, Processing Time 0.03 seconds

A Safety IO Throttling Method Inducting Differential End of Life to Improving the Reliability of Big Data Maintenance in the SSD based RAID (SSD기반 RAID 시스템에서 빅데이터 유지 보수의 신뢰성을 향상시키기 위한 차등 수명 마감을 유도하는 안전한 IO 조절 기법)

  • Lee, Hyun-Seob
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.593-598
    • /
    • 2022
  • Recently, data production has seen explosive growth, and the storage systems to store these big data safely and quickly is evolving in various ways. A typical configuration of storage systems is the use of SSDs with fast data processing speed as a RAID group that can maintain reliable data. However, since NAND flash memory, which composes SSD, has the feature that deterioration if writes more than a certain number of times are repeated, can increase the likelihood of simultaneous failure on multiple SSDs in a RAID group. And this can result in serious reliability problems that data cannot be recovered. Thus, in order to solve this problem, we propose a method of throttling IOs so that each SSD within a RAID group leads to a different life-end. The technique proposed in this paper utilizes SMART to control the state of each SSD and the number of IOs allocated according to the data pattern used step by step. In addition, this method has the advantage of preventing large amounts of concurrency defects in RAID because it induces differential lifetime finishes of SSDs.

The Efficient Merge Operation in Log Buffer-Based Flash Translation Layer for Enhanced Random Writing (임의쓰기 성능향상을 위한 로그블록 기반 FTL의 효율적인 합병연산)

  • Lee, Jun-Hyuk;Roh, Hong-Chan;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.161-186
    • /
    • 2012
  • Recently, the flash memory consistently increases the storage capacity while the price of the memory is being cheap. This makes the mass storage SSD(Solid State Drive) popular. The flash memory, however, has a lot of defects. In order that these defects should be complimented, it is needed to use the FTL(Flash Translation Layer) as a special layer. To operate restrictions of the hardware efficiently, the FTL that is essential to work plays a role of transferring from the logical sector number of file systems to the physical sector number of the flash memory. Especially, the poor performance is attributed to Erase-Before-Write among the flash memory's restrictions, and even if there are lots of studies based on the log block, a few problems still exists in order for the mass storage flash memory to be operated. If the FAST based on Log Block-Based Flash often is generated in the wide locality causing the random writing, the merge operation will be occur as the sectors is not used in the data block. In other words, the block thrashing which is not effective occurs and then, the flash memory's performance get worse. If the log-block makes the overwriting caused, the log-block is executed like a cache and this technique contributes to developing the flash memory performance improvement. This study for the improvement of the random writing demonstrates that the log block is operated like not only the cache but also the entire flash memory so that the merge operation and the erase operation are diminished as there are a distinct mapping table called as the offset mapping table for the operation. The new FTL is to be defined as the XAST(extensively-Associative Sector Translation). The XAST manages the offset mapping table with efficiency based on the spatial locality and temporal locality.

File System Featured FAT Compatible Flash Translation Layer (파일시스템 기능을 지원하는 FAT 호환 플래시 변환 계층)

  • Kim, Yumi;Baek, Seungjae;Choi, Jongmoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.699-702
    • /
    • 2009
  • 저 전력, 내구성, 소형, 빠른 속도 등의 장점을 가지고 있는 플래시 메모리는 생산 기술 발전에 힘입어 센서 노드, 휴대폰, MP3, PMP등의 소형 전자 제품의 저장장치에서부터 SSD형태로 노트북이나 서버에 이르기 까지 그 활용범위가 더욱 확장되어 가고 있다. 다양한 시스템에서 사용될 수 있는 플래시 메모리의 특성상 이에 저장된 데이터의 호환성은 중요한 고려사항이다. 이를 위해 플래시 메모리의 고유한 특성을 숨기고 일반적인 블록장치로 에뮬레이션 해주는 소프트웨어인 FTL과 FAT 파일시스템이 플래시 메모리 관리를 위한 사실상 표준 소프트웨어로써 사용되고 있다. 그러나 범용 컴퓨터를 기반으로 개발된 FTL과 FAT 파일시스템을 열악한 하드웨어로 구성된 시스템에서 구동하는 경우 많은 제약이 발생한다. 따라서 본 논문에서는 이러한 제약사항을 극복하기 위해 최소한의 파일시스템 기능을 제공하는 FAT 표준 호환 FTL을 제안한다. 제안된 기법은 리눅스 운영체제에 동적으로 적재 가능한 모듈형태로 구현되었으며, 실험을 통해 본 논문에서 제안한 기법이 기존 기법 대비 32%의 메모리 공간을 절약할 수 있으며, 동시에 완벽한 FAT 호환성을 제공함을 확인할 수 있었다.

Data De-duplication and Recycling Technique in SSD-based Storage System for Increasing De-duplication Rate and I/O Performance (SSD 기반 스토리지 시스템에서 중복률과 입출력 성능 향상을 위한 데이터 중복제거 및 재활용 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.149-155
    • /
    • 2012
  • SSD is a storage device of having high-performance controller and cache buffer and consists of many NAND flash memories. Because NAND flash memory does not support in-place update, valid pages are invalidated when update and erase operations are issued in file system and then invalid pages are completely deleted via garbage collection. However, garbage collection performs many erase operations of long latency and then it reduces I/O performance and increases wear leveling in SSD. In this paper, we propose a new method of de-duplicating valid data and recycling invalid data. The method de-duplicates valid data and then recycles invalid data so that it improves de-duplication ratio. Due to reducing number of writes and garbage collection, the method could increase I/O performance and decrease wear leveling in SSD. Experimental result shows that it can reduce maximum 20% number of garbage collections and 9% I/O latency than those of general case.

Development of Efficient Data Distribution Storage Algorithm for High Speed Data Backup in DRAM based SSD (DRAM기반 SSD에서 고속백업을 위한 DRAM기반 SSD에서 고속백업을 위한 효율적인 데이터 분산저장 알고리즘 개발)

  • Song, Han-chun;Ahn, Hyuk-jong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.11-15
    • /
    • 2015
  • SSD(Solide State Disk) Memory is gradually replacing HDD(Hard Disk Drive) for high speed data input and output processing on Internet server system. In this paper, we proposed efficient data distribution storage algorithm in DRAM based SSD. And we did performance test for proposed algorithm and existing algorithm in the same server environment condition. The result of comparison of performance test is as fellows. Data backup processing time of proposed algorithm was reduced by half than that of existing algorithm.

A Design of SSD Dedicated RAID System for Efficient Resource Management (효율적인 자원관리를 위한 SSD 전용 RAID 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.109-114
    • /
    • 2024
  • Enterprise storage systems that require high data reliability are applying RAID (Redundant Array of Independent Disks) systems to recover from data loss and failure. In particular, RAID 5 ensures space efficiency and reliability by distributing parity across multiple storage devices. However, when storage devices have different capacities, RAID is built based on the smallest capacity storage device, resulting in wasted storage space. Therefore, research is needed to solve this resource management problem. In this paper, we propose a method for RAID grouping of each independent NAND flash memory block in a RAID consisting of SSD (Solid State Disk) with external SSDs as well as internal SSDs. This method is divided into a policy for delivering block information inside SSDs to the RAID system and a policy for RAID grouping of physical addresses delivered from the RAID system. This method allows us to maintain a RAID that does not waste resources when SSDs of different capacities are grouped into RAID5. Finally, we demonstrate the effectiveness of the proposed method through experiments.

A Hetero-Mirroring Scheme to Improve I/O Performance of High-Speed Hybrid Storage (고속 하이브리드 저장장치의 입출력 성능개선을 위한 헤테로-미러링 기법)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4997-5006
    • /
    • 2010
  • A flash-memory-based SSDs(Solid State Disks) are one of the best media to support portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major database storage components for desktop and server computers. However, we need to improve traditional storage management schemes based on HDD(Hard Disk Drive) and RAID(Redundant array of independent disks) due to the relatively slow or freezing characteristics of write operations of SSDs, as compared to fast read operations. In order to achieve this goal, we propose a new storage management scheme called Hetero-Mirroring based on traditional HDD mirroring scheme. Hetero-Mirroring-based scheme improves RAID-1 operation performance by balancing write-workloads and delaying write operations to avoid SSD freezing. Our test results show that our scheme significantly reduces the write operation overheads and freezing overheads, and improves the performance of traditional SSD-RAID-1 scheme by 18 percent, and the response time of the scheme by 38 percent.

Development of Simulator using RAM Disk for FTL Performance Analysis (RAM 디스크를 이용한 FTL 성능 분석 시뮬레이터 개발)

  • Ihm, Dong-Hyuk;Park, Seong-Mo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.35-40
    • /
    • 2010
  • NAND flash memory has been widely used than traditional HDD in PDA and other mobile devices, embedded systems, PC because of faster access speed, low power consumption, vibration resistance and other benefits. DiskSim and other HDD simulators has been developed that for find improvements for the software or hardware. But there is a few Linux-based simulators for NAND flash memory and SSD. There is necessary for Windows-based NAND flash simulator because storage devices and PC using Windows. This paper describe for development of simulator-NFSim for FTL performance analysis in NAND flash. NFSim is used to measure performance of various FTL algorithms and FTL wear-level. NAND flash memory model and FTL algorithm developed using Windows Driver Model and class for scalability. There is no need for another tools because NFSim using graph tool for data measure of FTL performance.

Hybrid Data Deduplication Method for reducing wear-level of SSD (SSD의 마모도 감소를 위한 복합적 데이터 중복 제거 기법)

  • Lee, Seung-Kyu;Yang, Yu-Seok;Kim, Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.543-546
    • /
    • 2011
  • SSD는 일반적으로 사용되는 HDD와는 달리 기계적 동작이 없는 반도체 메모리를 사용하여 데이터를 저장하는 장치이다. 플래시 기반의 SSD는 읽기 성능이 뛰어난 반면 덮어쓰기 연산이 안되는 단점이 있다. 즉 마모도가 존재하여 SSD의 수명에 영향을 준다. 하지만 HDD보다 뛰어난 성능 때문에 노트북이나 중요한 데이터 등을 다루는 시스템 등에서 많이 사용하고 있다. 본 논문에서는 이러한 SSD를 서버 스토리지로 사용할 때 기존의 데이터 중복 제거 기법의 장점만을 조합한 복합적 데이터 중복 제거 기술을 제안하고 이 기법이 SSD의 마모도 측면에서 훨씬 효율적임을 검증하였다.

K-means clustering analysis and differential protection policy according to 3D NAND flash memory error rate to improve SSD reliability

  • Son, Seung-Woo;Kim, Jae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.1-9
    • /
    • 2021
  • 3D-NAND flash memory provides high capacity per unit area by stacking 2D-NAND cells having a planar structure. However, due to the nature of the lamination process, there is a problem that the frequency of error occurrence may vary depending on each layer or physical cell location. This phenomenon becomes more pronounced as the number of write/erase(P/E) operations of the flash memory increases. Most flash-based storage devices such as SSDs use ECC for error correction. Since this method provides a fixed strength of data protection for all flash memory pages, it has limitations in 3D NAND flash memory, where the error rate varies depending on the physical location. Therefore, in this paper, pages and layers with different error rates are classified into clusters through the K-means machine learning algorithm, and differentiated data protection strength is applied to each cluster. We classify pages and layers based on the number of errors measured after endurance test, where the error rate varies significantly for each page and layer, and add parity data to stripes for areas vulnerable to errors to provides differentiate data protection strength. We show the possibility that this differentiated data protection policy can contribute to the improvement of reliability and lifespan of 3D NAND flash memory compared to the protection techniques using RAID-like or ECC alone.