• Title/Summary/Keyword: 플라즈마중합

Search Result 142, Processing Time 0.035 seconds

A Study on the molecular structure and molecular weight control of styrene films by plasma polymerization (플라즈마 중합법에 의한 스티렌 박막의 분자 구조 및 분자량 제어에 관한 연구)

  • 김종택;최충양;박종관;박응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1997
  • The plasma polymerized styrene films were prepared by using an inter-electrode capacitively coupled gas-flow-type reactor, and the effects of plasma polymerization condition on the molecular weight distribution were investigated by Fourier Transform Infrared (FT-IR), Pyrolysis Gas Chromatography(PyGC), Differential Scanning Calorimetry(DSC) and Gel Permeation Chromatography(GPC). From the above results, the very cross-linked films different from chemical characteristics of the starting monomer were taken out, and it is realized that the molecular structure, cross linking density, and molecular weight distribution could be controlled by changing the parameters such as deposition pressure, deposition power and gas flow rate. Accordingly, it is suggested that plasma polymerization method performed by inter-electrode capacitively coupled gas-flow-type reactor has good characteristics for manufacturing the functional organic thin films which can be applied in sensors, opto-electric device, photo-resist by changing the polymerization parameters.

  • PDF

The effects of blocking the oxygen in the air during the polymerization of sealant (광중합 시 공기 중 산소의 차단이 치면열구전색제의 중합에 미치는 영향)

  • Oh, You-Hyang;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.365-376
    • /
    • 2006
  • The purpose of this study was to evaluate the efficacy of blocking the oxygen in the air during the polymerization of sealant. All curing were performed with various light curing units under the application of oxygen gel barrier, stream of nitrogen and carbon dioxide gas for inhibition of oxygen diffusion into sealant surface. The results of present study can be summarized as follows : 1. The amount of eluted TEGDMA form the specimens cured with all the three different light units in the stream of $N_2$ and $CO_2$ gas and application of Oxygen gel barrier($DeOx^{(R)}$) were significantly lower than in the room-air atmosphere (Control) (p<0.05). 2. In the $DeOx^{(R)}$ application, the amount of eluted TEGDMA the specimen cured with PAC light for 10seconds was less than that cured in the stream of $N_2$ and $CO_2$ atmospheric conditions (p<0.05) 3. In the LED using 10 or 20sec irradiation times under the stream of $N_2$ and $CO_2$, the eluted TEGDMA showed to be no statistically significant difference (p>0.05). 4. The microhardness from the specimens cured with all the three different light units under each treated conditions were significantly higher than in the room-air atmosphere (p<0.05). 5. The surface treatment by $DeOx^{(R)}$, $N_2$ and $CO_2$ reduces the thickness of oxygen inhibited layer by sp proximately 49% of the untreated control value.

  • PDF

Enhanced Adhesion of Tire Cords via Plasma Polymerizations (플라즈마 중합에 의한 타이어 코드의 접착성 향상연구)

  • Kim, R.K.;Sohn, B.Y.;Han, M.H.;Kang, H.M.;Yoon, T.H.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 1999
  • Steel tire cords were coated via RF plasma polymerization of acetylene and butadiene gas in order to enhance adhesion to rubber compounds. Adhesion of tire cords was measured by TCAT and T-test as a function of type of gas, plasma powder, treatment time, gas pressure and Ar gas etching. Some samples were subjected to aging study in distilled water at $80^{\circ}C$ for a period of 7 days. After testing, tire cords were analysed by SEM to elucidate the adhesion mechanism. The highest adhesion values were obtained at 20W, 2min and 25mtorr for acetylene plasma polymerization, and l0W, 4min, 25mtorr for butadiene plasma polymerization. However, Ar plasma etching did not affect adhesion, while the adhesion of tire cords increased rather than decreased, contrary to expectations. It was not possible to elucidate failure mode by SEM, owing to the rough surface of the tire and the thin plasma polymer coating layer.

  • PDF

Plasma Polymerized Styrene for Gate Insulator Application to Pentacene-capacitor (유기박막트랜지스터 응용을 위해 플라즈마 중합된 Styrene 게이트 절연박막)

  • Hwang, M.H.;Son, Y.D.;Woo, I.S.;Basana, B.;Lim, J.S.;Shin, P.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.327-332
    • /
    • 2011
  • Plasma polymerized styrene (ppS) thin films were prepared on ITO coated glass substrates for a MIM (metal-insulator-metal) structure with thermally evaporated Au thin film as metal contact. Also the ppS thin films were applied as organic insulator to a MIS (metal-insulatorsemiconductor) device with thermally evaporated pentacene thin film as organic semiconductor layer. After the I-V and C-V measurements with MIM and MIS structures, the ppS revealed relatively higher dielectric constant of k=3.7 than those of the conventional poly styrene and very low leakage current density of $1{\times}10^{-8}Acm^{-2}$ at electric field strength of $1MVcm^{-1}$. The MIS structure with the ppS dielectric layer showed negligible hysteresis in C-V characteristics. It would be therefore expected that the proposed ppS could be applied as a promising dielectric/insulator to organic thin film transistors, organic memory devices, and flexible organic electronic devices.

Preparation and Photo Conducting Characteristics of Plasma Polymerized Organic Photorecepter (플라즈마 중합법에 의한 유기 감광체 박막의 제조와 광전도 특성)

  • 박구범
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.19-25
    • /
    • 1999
  • The photoreceptor films with double layer structure were prepared by the plasma polymerization and the dip-coating method. The blocking layer was coated with A1$_2$O$_3$ on the Al substrate and the charge generation layer was formed by H$_2$ phthalocyanine (H$_2$Pc). Poly 9-Vinylcarbazole was used as a charge transport layer. H$_2$Pc film prepared by the vacuum evaporation had absorption peaks on 613.6[nm] and 694.8[nm], and H$_2$Pc film prepared by the plasma polymerization had a dull peaks between 600 and 700[nm]. The surface potential of PVCz increased with increasing the applied voltage and the thickness of PVCz. The dark decay characteristic, the light decay time and the residual time increased with increasing the thickness of PVCz. The surface charge of PVCz of 15[${\mu}{\textrm}{m}$] thickness was 134[nc/$\textrm{cm}^2$] at the surface potential of -600[V] and the charge generation efficiency of H$_2$Pc was 0.034.

  • PDF

Floating Gate Organic Memory Device with Plasma Polymerized Styrene Thin Film as the Memory Layer (플라즈마 중합된 Styrene 박막을 터널링층으로 활용한 부동게이트형 유기메모리 소자)

  • Kim, Heesung;Lee, Boongjoo;Lee, Sunwoo;Shin, Paikkyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.131-137
    • /
    • 2013
  • The thin insulator films for organic memory device were made by the plasma polymerization method using the styrene monomer which was not the wet process but the dry process. For the formation of stable plasma, we make an effort for controlling the monomer with bubbler and circulator system. The thickness of plasma polymerized styrene insulator layer was 430 nm, the thickness of the Au memory layer was 7 nm thickness of plasma polymerized styrene tunneling layer was 30, 60 nm, the thickness of pentacene active layer was 40 nm, the thickness of source and drain electrodes were 50 nm. The I-V characteristics of fabricated memory device got the hysteresis voltage of 45 V at 40/-40 V double sweep measuring conditions. If it compared with the results of previous paper which was the organic memory with the plasma polymerized MMA insulation thin film, this result was greater than 18 V, the improving ratio is 60%. From the paper, styrene indicated a good charge trapping characteristics better than MMA. In the future, we expect to make the organic memory device with plasma polymerized styrene as the memory thin film.

A STUDY ON THE SHEAR BOND STRENGTHS OF VISIBLE LIGHT-CURED GLASS IONOMER CEMENT WITH SEVERAL LIGHT-CURING UNITS (수종의 광중합기를 이용한 교정용 광중합형 글라스 아이오노머 시멘트의 전단 결합 강도에 관한 연구)

  • Kim, Min-Soo;You, Seoung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The purpose of this study was to assess the effect of light-tip distance on the shear bond strength of a visible light-cured glass ionomer cement(Fuji Ortho LC ; GC, Japan) cured with three different light curing units : a halogen light(Elipar Trilight ; 3M ESPE, Seefeld, Germany), a Light Emitting Diode (LED, Elipar Freelight2 ; 3M ESPE, Seefeld, Germany) and a plasma arc light (Flipo ; LOKKI, France). 1. When used at a distance of 0mm from the bracket, the three light curing units showed no statistically different shear bond strengths. At distance of 3 and 6mm, no significant differences were found between the halogen and plasma arc lights, but both had significantly higher shear bond strengths than the LED light. 2. The halogen light and plasma arc light showed that no significant differences in bond strength were found among the three distances. Using the LED light, a greater light-tip distance produced significantly lower shear bond strengths.

  • PDF

DEPOSITION OF BUFFER LAYER USING PLASMA POLYMERIZATION TECHNQUE FOR OLED DEVICE (플라즈마 중합법에 의한 OLED 소자용 버퍼층의 제작)

  • Lim, J.S.;Kim, H.G.;Kim, Y.H.;Lim, Y.C.;Jung, G.H.;Lee, B.S.;Shin, P.K.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1567-1569
    • /
    • 2004
  • 유기발광 소자의 전공 수송층 재료로 많이 쓰이고 있는 N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4-4'-diamine(TPD)는 OLED소자가 연속적으로 작동하게 되면 TPD박막이 결정화되는데, 이러한 결정화는 디스플래이 소자에 dark spot(흑점)의 문제점을 가져왔다. 이러한 원인을 제거하기 위해서 ITO위에 PolyThiophene을 완충층으로 제작함으로써, OLED 소자의 효율에 미치는 영향은 크다고 할수 있다. 자체 제작한 플라즈마 중합장치의 중합조건과 중합체 PolyThiophene의 분자구조를 알아보았다.

  • PDF