• Title/Summary/Keyword: 플라즈마중합

Search Result 142, Processing Time 0.04 seconds

Effect of substrate bias on the properties of plasma polymerized polymer thin films (기판 바이어스가 플라즈마 중합 고분자 박막에 미치는 영향)

  • Lim, Y.T.;Lim, J.S.;Shin, P.K.;Lee, S.W.;Lim, K.B.;Yoo, D.H.;Lee, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1475-1476
    • /
    • 2011
  • 플라즈마 중합 기법에 의해 제작된 고분자 (plasma polymerized polymer) 박막은 단량체(monomer)의 고유의 특성을 유지하며 고분자 박막이 형성됨을 확인하고, 기판 바이어스에 의해 시간에 따른 증착 두께는 선형적으로 증가함을 확인하였다. 자체 제작된 플라즈마 중합 시스템에서 self-bias voltage를 최소화하여 플라즈마 고분자의 증착효율 및 두께 조절이 가능함을 확인하였다. 플라즈마 합성을 이용해 고분자 박막을 제조하고, MIM 소자를 제작하여 통상적인 고분자 합성기법으로 제조된 고분자 대비 높은 유전상수 값이 확인되었다. 결과적으로 유기박막 트랜지스터 및 유기 메모리 등 플렉서블 유기전자소자용 절연/유전체 박막으로의 응용이 기대된다.

  • PDF

A STUDY ON THE MODE OF POLYMERIZATION OF LIGHT-CURED RESTORATIVE MATERIALS CURED WITH PLASMA ARC LIGHT CURING UNIT (Plasma arc light curing unit을 이용한 광중합형 수복재의 중합양상)

  • Woo, Youn-Sun;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The purpose of this study was to compare the effect of distance of light tip to resin surfaces and exposure time on the polymerization of surface and 2 mm subsurface of composite resins cured with two light sources; conventional halogen light (XL 3000, 3M, U.S.A.) and plasma arc light (Flipo, LOKKI, France) and compare the uniformity of polymerization from the center to the periphery of resin surfaces according to polymerization diameter cure with two light sources. From the experiment, the following results were obtained. 1. Difference of relative light intensity decrease in plasma arc light smaller than that of conventional halogen light(p<0.05). 2. In all groups, microhardness of top surfaces was decreased when distance of the light tip to resin surfaces is more than 2mm and increased according to increase of exposure time(p<0.05). 3. Difference of microhardness of the 2mm subsurface was rapidly decreased when distance of light tip to resin surfaces is more than 4mm(except, plasma arc light exposure time of 3 seconds). and the distance of light tip to resin surfaces and exposure time more affected 2mm subsurface rather than top surface(p<0.05). 4. Although exposure time was increased, difference of microhardness of the 2mm subsurface with the distance of light tip to resin surfaces was relatively high in groups between below 4mm and 6 mm(p<0.05). 5. Plasma arc light exposure time of 6 to 9 seconds produced microhardness values and microhardness change according to various distance similar to those produced with 40 to 80 second exposure to a conventional halogen light(p>0.05). 6. In all groups, microhardness was decreased gradually from the center to the periphery of resin surfaces(p<0.05).

  • PDF

Surface Modification of Steel Tire Cords via Plasma Etching and Plasma Polymer Coating : Part I. Adhesive properties (플라즈마 고분자 코팅에 의한 강철 타이어 코드의 표면 개질 : 제1부. 타이어 코드의 접착성)

  • Kang, H.M.;Chung, K.H.;Kaang, S.;Yoon, T.H.
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.53-62
    • /
    • 2000
  • Zinc plated steel tire cords were treated with RF plasma polymerization coating of acetylene or butadiene in order to enhance adhesion to rubber compounds. Plasma polymerization was carried out as a function of plasma power, treatment tune and gas pressure. In order to maximize adhesion, argon plasma etching was performed, with carrier gas such as argon, nitrogen and oxygen, while the adhesion of tire cords was evaluated via TCAT. Best results were obtained from a combination treatment of argon etching (90 W. 10 min, 30 mTorr) and acetylene plasma polymerization coating (10 W, 30 sec, 30 mTorr) with argon carrier gas (25/5:acetylene/argon). These samples exhibited a pull out force of 285N which is comparable to that obtained from the brass plated tire cords (290N).

  • PDF

A Study on the Permeation Properties of Permanent Gases and condensable Vapors through Hexamethyldisiloxane Plasma-Polymerized Membranes (Hexamethyldisiloxane 플라즈마 중합막을 통한 영구기체 및 응축성 증기의 투과특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.699-706
    • /
    • 2018
  • The permeation properties of plasma polymer membranes were studied for permanent gases such as He, $H_2$, $O_2$, $N_2$, $CH_4$ and condensable vapors such as $CO_2$, $C_2H_4$, $C_3H_8$. The plasma polymers were prepared by the discharge of microwave or radiofrequency(RF) wave. Hexamethyldisiloxane (HMDS) vapor was used as a monomer for plasma polymerization. In HMDS plasma-polymerized membranes prepared under microwave discharge, the permeability coefficient was dependent of the kinetic molecular diameter of the permeate gases. Additionally the membranes showed higher $O_2/N_2$ permselectivity compared to the plasma polymers from radiofrequency discharge. On the contrary, in the HMDS plasma-polymerized membranes prepared under radiofrequency discharge, the permeability coefficient was dependent of the critical temperature of the permeant gases. The membranes showed high selectivities of $C_2H_4$ and $C_3H_8$ over $N_2$. The permeability coefficient of plasma polymerized membranes prepared under microwave discharge was dependent of the molecular diameter of permeant gases because of high crosslinking density of the membrane. However, the crosslinking density of the plasma polymerized membranes prepared under RF discharge was lower because the energy density of RF wave is weaker than that of microwave. Hence, the permeability of RF plasma polymerized membranes became dependent of the critical temperature rather than molecular diameter of the gases.

EFFECT OF SOFT-START CURING ON THE CONTRACTION STRESS OF COMPOSITE RESIN RESTORATION POLYMERIZED WITH LED AND PLASMA CURING UNIT (LED와 플라즈마 광원의 완속기시 광중합 방식이 복합레진의 수축응력에 미치는 영향)

  • Chung, Yang-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.623-631
    • /
    • 2007
  • Effect of Soft-start curing on the contraction stress of composite resin restoration polymerized with LED and plasma curing unit The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin (Filtek $Z-250^{TM}$, 3M ESPE, USA) was cured using the one-step continuous curing method with three difference light sources ; conventional halogen light ($XL3000^{TM}$, 3M ESPE, USA) cure for 40 seconds at $400 mw/cm^2$, LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure for 20 seconds at $800\;mW/cm^2$ a and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure for 12 seconds at $1300 mW/cm^2$. For the soft-start curing method ; LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure exponential increase with 5 seconds followed by 17 seconds at $800\;mW/cm^2$ and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure 2 seconds light exposure at $650\;mW/cm^2$ followed by 11 seconds at $1300\;mW/cm^2$. The strain guage method was used for determination of polymerization contraction. Measurements were recorded at each 2 second for the total of 800 seconds including the periods of light application. Obtained data were analyzed statically using Repeated measures ANOVA, One way ANOVA, and Tukey test. The results of present study can be summarized as follows: 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05). 2. Contraction stress was not revealed significant difference between Halogen curing light groups and LED and Plasma Light curing with soft-start group (P>0.05). 3. LED and Plasma Light curing with soft-start showed lower contraction stress than the one-step continuous light curing (P<0.05).

  • PDF

A STUDY OF MONOMER RELEASE FROM PIT AND FISSURE SEALANTS ACCORDING TO VARIOUS LIGHT SOURCES (광원에 따른 수종의 치면열구전색제로부터 용리되는 모노머에 관한 연구)

  • Seo, Hyun-Woo;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.284-292
    • /
    • 2005
  • The aim of this study was to identify and quantify the major or detectable monomers released from any of five commercially-available, light-cured pit and fissure sealants with three different light sources : conventional halogen light curing unit, plasma arc light curing unit and LED curing unit. After curing, specimens were immediately immersed in distilled water for different time intervals. The time related release of monomers were analyzed by high performance liquid chromatography(HPLC). Identification and quantitative analysis of monomers were performed by the comparison of the elution time and the absorption peak height of the eluates with those of the authentic sample. The result of this study can be summarized as follows. 1. Standard solution peaks with retention times of 2.3, 3.2, 5.6, 6.5, 10.4 minutes were identified as BPA, TEGDMA, UDMA, Bis-GMA, Bis-DMA, respectively. 2. None of the chromatograms of the tested sealants displayed peaks with the same retention time as that of the standard solution, except for TEGDMA. 3. The highest release rate of TEGDMA was observed during the 12hr period for all samples and declined thereafter. 4. The elution of TEGDMA from curing with Halogen curing unit for 20 second and LED for 10 second was less than that resulting from curing with Plasma arc for 3 second. 5. TEGDMA was detected at much lower levels in eluates from the Pit & Fissure $Sealant^{TM}$ than other sealants. The elution of TEGDMA from the $Helioseal^{(R)}$ F cured with Halogen light curing unit, the $Concise^{TM}$ cured with Plasma arc curing unit and the $Teethmate^{(R)}$ F-1 cured with LED curing unit were higher than other sealants.

  • PDF

The Structures and Dielectric Properties of Plasma Polymerized Polyethylene (플라즈마 중합 폴리에틸렌 구조와 유전특성)

  • 김두석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.38-42
    • /
    • 2000
  • Plasma polymerized thin films were manufactured inter-electrode coupled plasma polymerization apparatus. The deposition rate reached its maximum between 40[W] and 100[W]. In the ESCA analysis, peaks revealing -CH2, -CH, -C- were present at 285.4 and 285.5[eV] respectively. The C=O peak at 532.8[eV] and the C-O peak at 533.8[eV], which were grouped with an unignorable amount of oxygen were conformed. In ESR analysis, the curve revealing strong amplification was in saturation, which was affected by weak power. This is considered as a -CH-Ch=Ch- structure containing the Allyl group. The relative permittivity of the plasma polymerized thin films was about 3.5 at a frequency of 100[Hz]∼200[kHz]. The dissipation factor showed allow value of 0.008.

  • PDF

INFLUENCE OF LIGHT SOURCE AND CURING TIME ON SURFACE HARDNESS OF RESIN COMPOSITES (중합 광원과 중합 시간이 복합레진의 표면 경도에 미치는 영향)

  • Bae, Sang-Man;Lee, Kwang-Hee;Kim, Dae-Eup;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • The purpose of study was to compare the plasma arc light with the halogen light in compostie resin curing. Three composite resin materials(Z-100, 3M, USA; Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, USA) were filled in the teflon molds (4mm in diameter and 2, 3, 4, 5mm in thickness) and cured with either the conventional low-intensity light curing unit with a halogen lamp (Optilux 360, Demetron, U.S.A.) for duration of 40 seconds or with the high-intensity light curing unit with a plasma arc lamp (Flipo, Lokki, France) for duration of 3, 6, and 9 seconds. The intensity of halogen light was about $370mW/cm^2$ and that of plasma light was about $1,900mW/cm^2$. After one week, the surface hardnesses of both the top and the bottom of the resin samples were measured with a microhardness tester(MXT70, Matsuzawa, Japan). There were significant differences in the hardness between the top and the bottom of the resin samples except the 2mm thickness samples cured by halogen light for 40s or by plasma light for 9s. There was no significant difference between the hardness values of the top surfaces of the thickness groups. The hardness values of the bottom surfaces decreased as the curing time decreased and as the thickness of resin samples increased, and the three kinds of resin composites showed similar patterns. The results suggest that the halogen light for 40 seconds might be able to cure greater depth of resin composites than the plasma light for 3, 6, or 9 seconds.

  • PDF

Tetrakis(trimethylsilyloxy)silane와 cyclohexane 혼합 전구체를 사용한 플라즈마중합박막에서의 mouse embryonic fibroblast cell과 bovine aortic endothelial cell의 동향

  • Gwon, Seong-Ryul;Ban, Won-Jin;Nam, Jae-Hyeon;Lee, Ye-Ji;Jeong, Dong-Geun;Seo, Yeong-Sik;Park, Hyeon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.227.2-227.2
    • /
    • 2015
  • 세포를 부착하는 기술은 세포를 배양하기 위한 가장 기초적이며 중요한 기술이다. 세포 부착기술은 대상물과 세포 간의 다양한 생물학적, 물리화학적 연관 관계가 있으나 세포와 부착 대상물 간의 복잡한 상호작용 때문에 완벽히 예측하기는 어렵다. 우리는 이 연구에서 siloxane 성분을 포함하고 있는 전구체인 tetrakis(trimethylsilyloxy)silane과 hydro-carbon을 포함하고 있는 전구체인 cyclohexane을 혼합하여 플라즈마 중합 박막을 만들고 그 박막에서의 mouse embryonic fibroblast cells과 bovine aortic endothelial cell 부착의 정도를 확인하였다. 플라즈마 중합 박막을 제작하기 위해 capacitively coupled plasma chemical vapor deposition system을 사용하였고 carrier gas로는 Ar을 사용하였다. Plasma RF power는 13.56MHz 70W를 사용하였다. Bubbler에서 기화된 전구체를 포함하고 있는 Ar carrier gas가 process chamber에서 혼합되고 두 전구체의 비율을 조절하기 위해 carrier gas를 0 에서 150sccm으로 변화시켜 플라즈마 중합 박막을 제작하였다. 플라즈마 중합 박막의 화학적 조성은 Fourier transform infrared absorption spectroscopy와 X-ray photoelectron spectroscopy를 이용하여 측정하였고, 생물학적 세포 부착 정도는 현미경을 통해 관찰하였다. 또한, 물과 박막의 접촉각(Water contact angle)을 측정함으로써 본 박막과 세포 부착에서의 친, 소수성의 연관성을 확인하였다. Tetrakis(trimethylsilyloxy)silane를 전구체를 사용한 박막에서 세포 부착 억제 표면특성이 관찰되었고, 주입되는 cyclohexane 비율이 늘어날수록 세포부착 가능한 표면 특성을 보였다. 결과적으로, 전구체인 tetrakis(trimethylsilyloxy)silane와 cyclohexane의 비율을 조절함으로써 세포의 부착정도를 제어할 수 있음을 확인하였다.

  • PDF

ELUTION OF RESIDUAL MONOMER ACCORDING TO VARIOUS LIGHT SOURCES AND CURING TIME ON THE POLYMERIZATION OF PHOTOACTIVATED PIT AND FISSURE SEALANTS (광중합 광원의 종류와 조사시간에 따른 치면열구전색제의 미반응 모노머 용출)

  • Oh, You-Hyang;Park, Yoon-Kyung;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.421-430
    • /
    • 2004
  • The purpose of this study was to measure and compare the amount of unreacted TEGDMA from pit and fissure sealants cured with three different light sources; conventional halogen light curing unit, plasma arc light curing unit and argon laser. The specimens were eluted in distilled water for different time intervals. The time-related release of TEGDMA were analyzed by reverse-phase high performance liquid chromatography(HPLC). The result of present study can be summarized as follows: 1. The time-related release of TEGDMA decreased with increasing curing time in conventional halogen light, however, that not statistically significant difference(p>0.05). 2. The elution from the specimens cured for 6 and 9 seconds with plasma arc light was similar results corresponding with the time-related TEGBMA release, and was significantly lower than that cured for 3 seconds(p<0.05). 3. The elution of TEGDMA from the specimens cured with argon laser was significantly higher than that cured with halogen and plasma arc light(p<0.05). 4. The elution of TEGDMA from under recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). 5. In time-related release of TEGDMA from recommended time of each light sources, the results correspond to 40 seconds of halogen light and 6 seconds of plasma arc light were similar(p>0.05). 6. The elution of TEGDMA, from over recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). In this study, I suggest that curing time of plasma arc light is 6 and/or 9 seconds in the field of clinical pediatric dentistry claiming its effectiveness in optimal polymerization and reduced chair time.

  • PDF