• Title/Summary/Keyword: 플라스틱 결함

Search Result 775, Processing Time 0.029 seconds

Study on the Changes of Ophthalmic Plastic Lens due to Heating (가열에 의한 플라스틱 렌즈의 변화 연구)

  • Cho, Hyun Gug;Moon, Byeong-Yeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.247-253
    • /
    • 2011
  • Purpose: The changes in properties of plastic lens due to heating was investigated. Methods: Plastic lenses of -2.00 diopter were heated at 60-100$^{\circ}C$, and then changes of refractive power, surface condition and transmittance were examined. Results: It was shown that the changes of lens surface due to heating happened at 70$^{\circ}C$ for 1h, 75$^{\circ}C$ for 10 min and 100$^{\circ}C$ 10 sec, respectively. More serious crack was occurred in high index lens and at higher heating temperature, respectively, and transmittance decreased depending on the extent of the damage on the surface of lens. Conclusions: Heating at temperatures above 70$^{\circ}C$ drives cracks on the surface of lens. Optician should recommend an appropriate lens considering the wearer's working conditions and guide for paying attention when they use eyeglasses.

Effects of Organic Peroxide Compatibilizer on the Physical Properties of the Biodegradable Plastic Film (과산화물 상용화제 첨가가 생분해 바이오 플라스틱 필름의 물성에 미치는 영향)

  • Han, Jung-Gu;Park, Seung Joon;Chung, Sung Taek;Li, Fanzhu;Kim, Pan-Chae;Kuk, YoungRye;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2021
  • The need for biodegradable plastic continues to increase, improvement of physical properties is necessary for actual use in the market. In this study, composite film was produced by adding peroxide additives to bioplastic according to concentration to investigate changes in the melt index, elongation, morphology, and TGA of the composite film. The addition of peroxide compatibilizer showed superior elongation of film and TGA compared to those of control. The added amount of compatibilizer affected the extrusion process, and it was revealed that adding an appropriate amount of peroxidizer is important. Analysis of the composite film's morphology revealed a heterogeneous dispersion sequence due to different rates of crystallization depending on the resin, and surface physical properties were best in the group added with 4% peroxide. The results above showed that the test group added with 4% peroxide compatibilizer was superior in the production of composite biodegradable film.

Comparison of Radiopharmaceutical Dosing Rate Measurements Using Plastic Syringes and Norm-ject Syringes (플라스틱 주사기와 놈젝 주사기를 이용한 방사성 의약품의 투여율 측정 비교)

  • Son, Sang-Joon;Park, Jeong-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.395-400
    • /
    • 2020
  • Between October 2019 and January 2020, 120EA of a syringe that was equipped with a 3-way injection material and administered 99mTc labeled compound among inpatients for SPECT examination at the Department of Nuclear Medicine at Daegu P Hospital. When using a plastic syringe, the average dosing rate according to the number of dilutions was 99mTc-ECD the highest at 90.87±11.08, and 99mTc-DMSA the lowest at 75.28±7.43. The average dose rate according to the number of dilutions was the highest at 93.58±7.96, and the lowest at 99mTc-DMSA at 91.60±6.07. The independent sample t-test showed whether the difference between the 99mTc-DMSA plastic syringe and the normjek syringe was statistically significant(p<0.01). The 99mTc-DMSA used for radiopharmaceuticals is a radiopharmaceutical that is mainly used for pediatric patients, and it is considered that it is necessary to use a normjek syringe rather than a general plastic syringe because the precise dosage is important.

Effects of Greenhouse Covering Material on Environment Factors and Fruit Yield in Protected Cultivation of Sweet Pepper (파프리카 재배 온실의 피복재 종류에 따른 환경요인과 수량성)

  • Kim, Ho-Cheol;Jung, Sek-Gi;Lee, Jeong-Hyun;Bae, Hyang-Jong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.253-257
    • /
    • 2009
  • To analysis effect of environment factors on productivity of sweet pepper according to greenhouse covering material (glass, plastic film), this was investigated. In glasshouse, outside light was positively correlated with yield as that $100MJ{\cdot}m^{-2}$ of outside light increased $300{\sim}500g{\cdot}m^{-2}$, also cumulative temperature was same tendency. On possibility of model development for yield estimate cumulative temperature was high than outside light. According to covering material, leaf photosynthesis, productivity per out-side light and term in glasshouse was more high 13%, 46%, and 47% compared with plastic film house, respectively. Result of analysis of effect of light, temperature, and $CO_2$ on yield, relative yield coefficient, yield increment coefficient, and yield reduction coefficient in glasshouse were more high 25%, 73%, and 34% compared with plastic film house, respectively. Hence, sweet pepper's growing in glasshouse compare with plastic film house had more productivity, but that had more sensitivity to charge of environment factors.

Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk (농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발)

  • You, Young-Sun;Kim, Mi-Kyung;Park, Myung-Jong;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Biomass-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. This article described the effect of the additions of oxo-biodegradable additive, 4 kinds of plant biomass, unsaturated fatty acid, citric acid in the properties of polyethylene films. Bio films were prepared using a variety of biomasses and tested for feasibility as a food packaging film. Mechanical properties such as tensile strength and percent elongation at break were evaluated. Husk biomasses from such as corn, soybean, rice, and wheat were pulverized using air classifying mill (ACM) and four different types of packaging films with thickness of $50{\mu}m$ were prepared using the pulverized biomass and low density polyethylene/linear low density polyethylene. The packaging film with wheat husk biomass was found to have greater mechanical properties of elongation and tensile strength than the other samples. Biodegradability of bio film was measured to be 51.5% compared to cellulose.

A Study on the Compression Moldablity for Continuous Fiber-Reinforced Polymeric Composites ―Part 1 : The Mechanical Propertis and the Cup-type Compression Moldability for Numbers of Needling― (연속섬유강화 플라스틱 복합재료의 압축성형에 관한 연구 -제I보 : 니들펀칭횟수에 따른 물성치 및 컵형 압축성형성-)

  • 오영준;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.31-39
    • /
    • 1999
  • Glass-fiber reinforced polymeric composites provide the desitable properties of high stiffness and strength as well as specific weight. Hence, they have become some of the most important materials in several industries. These composites can be grouped into thermoplastic and thermoset composites, with thermoplastic composites having several advantages over thermoset composites in mechanical properties and processing. As a result, the study of the material behavior and forming techniques of such composites has attracted considerable attention in recent years. When the continuous fiber-reinforced polymeric composites are molded by flow molding, the molded parts leads to be nonhomogeneity and anisotropic because of the separation and orientation of fibers. As the characteristics of the products are greatly dependent on the separation, it is very important to clarify the separation in relarion to molding conditions, fiber mat structures and mold geometry. In this study, the effects of the mold geometry and the fiber mat structure on the compression moldability are studied using the cup-type molding.

  • PDF

Measurement of the Size Distribution of Smoke Particles with Plastic Types Under Various Fire Conditions (다양한 화재조건에서 플라스틱 종류에 따른 연기입자의 크기분포 변화 측정)

  • Goo, Jaehark;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.8-15
    • /
    • 2017
  • Most fire victims succumb to smoke inhalation, and fire smoke toxicity from interior materials is increasing with increased use of plastics. Large amounts of hazardous effects of smoke are related to deposition of smoke particles in respiratory tracts, and deposition characteristics are influenced by size distribution of particles. Thus, it is essential to know the size distribution of smoke particles from plastics for hazard analysis of fire smoke. In a recent study, it has been shown that size distributions of smoke particles from PP are different from wood in many aspects. In order to know whether other plastics show the same characteristics as PP, size distributions of smoke particles from four plastic materials (LDPE, PA66, PMMA, and PVC) were measured in real time under each fire type with various temperature and oxygen supply. In this study, smoke particles from different plastics were generated uniformly by using steady-state tube furnace method provided in ISO/TS 19700. Their size distributions were measured by using an electrical low pressure impactor (ELPI). Results of measurements showed that size distributions of smoke particles from these four plastic materials were similar to those from PP in many aspects. However, they were distinctively different from those of wood.

Life Cycle Assessment of Mobile Phone Charger Containing Recycled Plastics (재생 플라스틱을 적용한 휴대폰 충전기 전과정평가)

  • Heo, Young-chai;Bae, Dae-sik;Oh, Chi-young;Suh, Young-jin;Lee, Kun-mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.698-705
    • /
    • 2017
  • Environmental impact of a mobile phone charger containing recycled plastic was quantified using LCA and the environmental benefits from the use of recycled and virgin plastic were compared. The assessment considers potential environmental impacts across the whole life cycle of the charger including; pre-manufacturing; manufacturing; distribution; product use; and end-of-life stages and quantified six environmental impact categories; Abiotic depletion; Acidification; Eutrophication; Global warming; Ozone layer depletion; and Photochemical oxidants creation. The study showed that the environmental impacts of the use stage accounted for 94.4% and 70% in the resource depletion and global warming impact categories, respectively, and the environmental impacts of the pre - manufacturing stage accounted for more than 98% in the other impact categories. The main cause of the environmental impacts in the use stage was electricity consumed by the charger. The main cause in the pre-manufacturing stage was PBA (Printed Board Assembly) and external case manufacturing. In order to quantify the environmental benefits of recycled PC (Polycarbonate) in the exterior case, the environmental impacts of 1 kg production of recycled PC and virgin PC were evaluated. The environmental impact on the abiotic depletion of the recycled PC is estimated to be 30% compared to the virgin PC, and the impacts on the other impact categories of the recycled PC were less than 5% of the virgin plastic. Sensitivity analysis was performed for 12 items including site data and assumptions made. The sensitivity of each item was less than 10%. The results of this study confirm that designing compact and light PBA, improving charging efficiency, and use of recycled plastic are important design factors to reduce the environmental impact of a charger.

The Effects of Additives in Waste Tire/Plastic Composites Using Internal Mixer (밀폐식 혼합기를 이용한 폐타이어/폐플라스틱 복합소재의 첨가제 효과)

  • Kim, Joon-Seok;Kim, Sang-Jun;An, Kee-Chul;Lim, Soon-Ho;Kim, Dae-Heum;Han, Choon
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.562-568
    • /
    • 2003
  • Environmental problems due to waste tire and waste plastics let us develop practical and economically feasible products. For this purpose, the characteristics of waste tire/plastic composites including various additives were examined using internal mixer. Experimental results indicated that the tensile strength and the flexural strength of waste tire/plastic composites decreased with the waste tire content. When 20 wt% of PP was added to the waste tire (60 wt%)/HDPE composites, the tensile strength was 1.5 times higher than the composite without PP, It was also found that the strain at break of composites increased by 2.5 times with 10 wt% addition of ethylene vinyl acetate and styrene ethylene butylenes styrene respectively. When 10 wt% of glass fiber was added to waste tire (60 wt%)/ HDPE composites, the tensile strength was 63% higher than the composite without glass fiber.

Combined toxic effects of water temperature and polystyrene beads in the brackish water flea (기수산 물벼룩에서 수온과 polystyrene beads의 복합 독성)

  • Youn-Ha Lee;Jong-Seok Park;Chaerin Park;Sang-Hyun Cho;Je-Won Yoo;Young-Mi Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.386-399
    • /
    • 2023
  • Microplastics and nanoplastics (NMPs) are considered one of hazardous contaminants in marine ecosystems due to their toxic effects, such as reproduction disorder and oxidative stress, on marine organisms. Although water temperature is rising due to global climate change, little information on the toxicological interaction between NMPs and temperature is available. Therefore, in this study, we confirmed the toxicity of NMPs (polystyrene [PS] beads; 0.05- and 6-㎛) on brackish water fleas (Diaphanosoma celebensis) depending on increased temperature (30℃ and 35℃) at individual and molecular levels. In the chronic toxicity test, the group exposed to high temperatures showed an earlier first reproduction time compared to the normal temperatures group, but it was delayed by co-exposure to NMPs at 35℃. Notably, the total reproduction decreased significantly only after 0.05-㎛ PS beads exposure at 30℃. Interaction analysis showed that first reproduction time, modulation of the antioxidant-related gene (GSTS1), heat shock gene (Hsp70), and ecdysteroid pathway-related genes (EcR_A, EcR_B, and CYP314A1) were closely related to temperature and PS beads size. These results indicate that microplastics have size-dependent toxicity, and their toxicity can be enhanced at high temperatures. In addition, higher temperatures and PS beads exposure may have negative effects on reproduction. This study suggests that various factors such as water temperature should be considered when evaluating the toxicity of microplastics in marine ecosystems, and provides an understanding of the complex toxic interaction between water temperature and microplastics for marine zooplankton.