• Title/Summary/Keyword: 플라스틱제품

Search Result 327, Processing Time 0.024 seconds

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.

Development of Metal-free Pump and Uni-material Packaging for Cosmetics to Improve Recycling (재활용성 향상을 위한 화장품용 메탈프리 펌프 및 유니소재 패키징 개발)

  • Sang Kyu, Ryu;Ho Sang, Kang;Jae Young, Oh
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.171-174
    • /
    • 2022
  • Cosmetic packing materials tend to be difficult to recycle when discarded due to the cosmetic industry's pursuit of aesthetics, functionality, and high value-added design. Pump packaging, which is widely used for the good preservation and discharge of cosmetics contents, is difficult to be separated and recycled because of a metal spring, which is in charge of pump resilience. In this study, a polypropylene spring was developed to replace the existing metal spring to improve the recyclability of the pump packaging for cosmetics, and was uni-materialized by applying to the cosmetic packing materials with 0.2 ml of discharge amount. In addition, performance test was conducted to verify the equivalence with the existing metal spring pumps as grounds for the commercialization of metal-free uni material pump packaging. The decompression leak test showed no leakage and displayed 14.8~17.5 N of pressing strength, 2.3~8.8 % of deviation in dispensing volume, and 4 occasions of pumping for initial discharge.

Determination of halogen elements in plastics by using combustion ion chromatography (연소IC를 이용한 플라스틱 중 할로겐 물질 정량)

  • Jung, Jae Hak;Kim, Hyo Kyoung;Lee, Yang Hyoung;Lee, Lim Soo;Shin, Jong Keun;Lee, Sang Hak
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.284-295
    • /
    • 2008
  • For plastics samples, a method using combustion ion chromatography was selected as a method for rapid low-cost analysis to test whether hazardous substances are contained or not. Using combustion ion chromatography, a verification test for F, Cl and Br compounds generated a linear calibration curve with a correlation coefficient of $r^2$ = 0.999~1.000 in the calibration range from 0.5 to 4.0 mg/kg. The detection limits were found to be 0.005~0.024 mg/kg and quantitative limits were found to be 0.014~0.073 mg/kg. The recoveries of combustion ion chromatography using certified reference material (CRM) were found to be 95.5~104.9%. Based on these results, a proficiency test was conducted together with several laboratories in and out of the country, to make comparative analysis of the results from each laboratory. As a result, the data supported the use of combustion ion chromatography as an effective analysis method to deal with regulations for halogen-free electronic products and for other hazardous substances in the electronic products.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Experimental Investigation of the Effect of Manufacturing and Working Conditions on the Deformation of Laminated Composite Structures (적층복합재료구조물의 변형에 미치는 제작조건과 작동조건의 영향에 대한 실험적 고찰)

  • Nhut, Pham Thanh;Yum, Young-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Fiber-reinforced plastic (FRP) is applied to fabricate the main structures of composite boats. Most of them are made from molds. These products deform after releasing from the mold and they also deform in high temperature environment. Therefore, experimental investigation and evaluation of deformation of laminated composite structures under various manufacturing and working conditions are necessary. The specimens of L-shape and curveshape were made from unsaturated polyester resin and fiberglass material. Input factors (independent variables) are percentage of hardener and manufacturing temperature and four levels of working temperature and output factor is the deformation which is measured on these specimens. From the results, it was observed that the higher the hardener rate and temperature, the lower the deformation. When the working temperature increased, the specimens showed great variations for the initial deformation values. Besides, the values of deformation or input factors could be predicted by regression equations.

폐목재 재활용 분진의 화재폭발위험성

  • Lee, Su-Hui;Han, U-Seop;Han, In-Su
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.115-115
    • /
    • 2013
  • 최근의 분진폭발은 플라스틱, 의약품, 목재, 곡물 저장고, 고체연료, 화학제품 제조공정 등을 포함하여 성형 및 가공 공정 등에서 화재폭발사고가 발생되고 있다. 폐목재를 재활용하여 PB(Particle board)를 생산하는 국내 제조사업장에서는 화재폭발 사고가 빈번히 발생하고 있어 예방대책이 요구되고 있다. 본 연구에서는 폐목재 제조공정의 사고예방과 목재분진 취급공정에 대한 안전대책 등을 제시하기 위하여 사고원인 물질인 폐목재 부유분진의 폭발특성실험을 실시하고 실험결과를 검토하였다. 또한 폐목재 분진의 화재폭발위험성을 상세히 평가하기 위하여 해당 물질의 자연발화점, 축열저장시험, 및 최소점화에너지 등의 화재폭발위험특성값을 실험적으로 조사하였다. 본 연구에서 사용한 폐목재 시료의 비구형 입자형태를 가지는데 입도분석기의 측정 결과 평균 입경은 $15.96{\mu}m$로 조사되었다. 또한 목재 분진의 함수율은 3.88%이며 중금속함유량은 1.73%이다. 자연발화점 측정결과 $225.5^{\circ}C$로서 비교적 낮게 측정되었고 퇴적분진에 대한 화재의 위험성은 높게 나타났다. 반면에 축열저장시험 결과를 통하여 공정관리 온도 및 보관온도를 $150^{\circ}C$ 이하로 관리하면 축열에 의한 자기분해 위험성은 낮은 것으로 판단되었다. 그러므로 축열에 의한 화재폭발 등의 위험성은 낮은 것으로 사료 된다. 최대폭발압력($P_{max}$)은 8.7 bar이며 폭발하한농도 (LEL)는 $60g/m^3$으로 나타났다. 부유분진의 폭발특성실험 결과 분진폭발지수(Kst)는 폭발등급 St 1 (0$bar{\cdot}m/s$)으로 나타났으며 폭발에 의한 위험성이 약한 분진으로 판정되었다. 최소점화에너지(MIE)는 10mJ < MIE <30mJ의 범위로 측정되었으며, 계산에 의해 추정된 최소점화 에너지(Es) 값은 14 mJ로서 일반적인 발화감도(Normal ignition sensitive)로 분류되었다. 이는 실질적인 점화원만 제거하여도 분진폭발을 예방할 수 있다는 것을 의미한다. 그러나 분진 폭발사고를 예방을 위하여 MIE값이 공정운전온도 $100^{\circ}C$ 초과 시에 급격히 낮아질 수 있으므로 운전 온도 설정에 있어서 주의가 필요하다.

  • PDF

A Design of a circularly polarized small UHF RFID antenna (소형 원형편파 UHF RFID 대역 융합형 안테나 설계)

  • Chae, Gyoo-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.109-114
    • /
    • 2015
  • A circularly polarized small UHF RFID reader antenna is presented. The antenna is composed of four elements and printed on the plastic substrate(${\varepsilon}_r=2.2$, t=5mm). Each element is fed by a probe which is sequentially connected to the feed line. The feed line is manufactured on the FR-4 substrate(t=1.0mm, ${\varepsilon}_r=4.7$). The simulation results shows that the antenna can be achieved a return loss of 12dB, gain of 3.46dBic over the UHF band of 902-928MHz. According to our simulation results, two prototype antennas are manufactured and measured. The obtained antennas operate in UHF RFID bands and can be adapted for various portable applications. In addition, a parametric study is conducted to facilitate the design and optimization processes.

Economic and Technological Feasibility Study on Pre- and Post-Consumer Recycling of Disposable Diaper in Korea (국내 폐 기저귀 재활용의 경제적, 기술적 타당성 분석)

  • Ahn, JoongWoo;Kim, YoungSil
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • An extensive literature survey and personal communication with relevant experts made it possible to understand economic and technical feasibility of disposable diaper recycling. Commercial level of soiled diaper recycling technology is currently available from a Dutch company, Knowaste Co., who owns a proprietary separation technology of the pulps, plastics and super absorbing polymer (SAP). In Korea, on the other hand, pre-consumer diaper recycling technology without material separation at its infancy converts manufacturing scraps into refuse plastic fuel (RPF), container/truck cargo boards or automobile boards/sheets. Although previous studies on feasibility of post-consumer recycling in Korea showed mutually contradictory implication, it was found out in this research that significantly positive economic feasibility can be obtained with pre-consumer diaper recycling. Subsequent recycling R&D including pre-consumer scrap and policy support may expedite 'Establishment of Sustainable Society.

Film Insert Molding of Automotive Door Grip Using Injection-Compression Molding (사출압축성형을 이용한 자동차용 도어그립 필름인서트성형)

  • Lee, Ho Sang;Yoo, Young Gil;Kim, Tae An
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.771-777
    • /
    • 2014
  • Injection-compression molding was used for film insert molding of an automotive door grip using films with three-dimensional embossed patterns. A vacuum mold was fabricated for vacuum-assisted thermoforming of the film, and an injection-compression mold was developed for film insert molding. Three pressure transducers were installed inside the mold cavity to measure cavity pressures. Injection-compression molding experiments under various compression strokes and toggle speeds were performed to investigate their effects on the cavity pressure and heights of the embossed patterns. The compression stroke of 0.9mm and low toggle speed resulted in a higher degree of conservation of embossed patterns. Additionally, the processing conditions for the maximum heights of embossed patterns were almost similar to those for minimum integral value of cavity pressures. The injection-compression molding process presents the opportunity to impart a soft-touch feeling of plastic parts printed with embossed patterns.

Numerical Analysis of Mold Deformation Including Plastic Melt Flow During Injection Molding (플라스틱 유동을 고려한 사출성형 충전공정 중 금형의 변형 해석)

  • Jung, Joon Tae;Lee, Bong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.719-725
    • /
    • 2014
  • In the present study, a numerical analysis of an injection molding process was conducted for predicting the mold deformation considering non-Newtonian flow, heat transfer, and structural behavior. The accurate prediction of mold deformation during the filling stage is important to successfully design and manufacture a precision injection mold. While the local mold deformation can be caused by various factors, a pressure induced by the polymer melt is considered to be one of the most significant ones. In this regard, the numerical simulation considering both the melt filling and the mold deformation was carried out. A mold core for a 2D axisymmetric center-gated disk was used for the demonstration of the present study. The flow behavior inside the mold cavity and temperature distribution were analyzed along with the core displacement. Also, a Taguchi method was employed to investigate the influence of the relevant parameters including flow velocity, mold core temperature, and melt temperature.