• Title/Summary/Keyword: 프린팅

Search Result 5,203, Processing Time 0.025 seconds

A Study on the Awareness and Preparation of the Forth Industrial Revolution of Some Health Department College Students (일부 보건계열학과 대학생의 4차 산업혁명 인식 및 준비도 연구)

  • Cho, Hye-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.291-299
    • /
    • 2020
  • The purpose of this study was to be used as basic data for the development of future-type curriculum in health. The awareness and preparation of the forth industrial revolution were surveyed on 280 college students in health departments preparing medical technicians. A self-written structured questionnaire was used for data collection, and the recognition of the forth industry revolution was 2.74, 3D printing (3.59) was high, and neural network machine learning(2.33) was the lowest. Students majoring in Physiotherapy (3.00) had the highest perception, and those majored in Dental engineering(2.37) had the lowest perception, and there was a difference in the degree of perception of IoT by major (p=0.024). For the forth industrial revolution, 54.5% of students are preparing, and lack of interest (42.9%) is the most difficult reason to prepare, and 50.6% of educational experience and 60.9% of VR&AR game experience have experience. In the era of the forth industrial revolution, job loss (38.7%) was high, and the required competency was creative capacity (50.6%). Therefore, it is necessary to develop a curriculum related to the fourth industrial revolution and apply teaching methods that can increase the awareness and preparation of health college students in the era of the fourth industrial revolution.

Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer (폐암 조기 진단을 위한 단백질 바이오마커 측정용 전압-전류법 기반의 나노바이오 분석법 개발)

  • Li, Jingjing;Si, Yunpei;Nde, Dieudonne Tanue;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.461-466
    • /
    • 2021
  • In this article, a portable and cost-effective voltammetric biosensor with nanoparticles was developed for the measurements of heterogeneous nuclear ribonucleoprotein A1 protein (hnRNP A1) biomarker which can potentially be used for lung cancer diagnosis. Gold nanoparticles were first electrodeposited onto screen printed carbon electrode (SPCE) followed by immobilizing a single stranded DNA aptamer specific to hnRNP A1 onto the electrode surface. Ethanolamine was also used when immobilizing DNA aptamer on the surface to prevent signals from non-specific adsorption events. Sequential injection of hnRNP A1 biomarker and anti-hnRNP A1 conjugated with alkaline phosphatase (ALP) onto the aptamer chip surface allows to form the sandwich complex of DNA aptamer/hnRNP A1/ALP-anti-hnRNP A1 on the electrode surface which further reacted with 4-aminophenyl phosphate (APP). The electrocatalytic reaction of the enzyme, ALP, and the substrate, APP, resulting in the oxidative current response changes at -0.05 and -0.17 V (vs. Ag/AgCl) against the hnRNP A1 concentration was measured using cyclic and differential pulse voltammetry, respectively. The Au nanoparticles-integrated voltammetric biosensor was applied to analyze human normal serum solutions possibly suggesting potential applicability for lung cancer diagnosis.

Research on The Implementation of Smart Factories through Bottleneck improvement on extrusion production sites using NFC (NFC를 활용한 압출생산현장의 Bottleneck 개선을 통한 스마트팩토리 구현 연구)

  • Lim, Dong-Jin;Kwon, Kyu-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2021
  • For extrusion processes in the process industry, the need to build smart factories is increasing. However, in most extrusion production sites, the production method is continuous, and because the properties of the data are undeed, it is difficult to process the data. In order to solve this problem, we present a methodology utilizing a near field communication (NFC) sensor rather than water-based data entry. To this end, a wireless network environment was built, and a data management method was designed. A non-contact NFC method was studied for the production performance-data input method, and an analysis method was implemented using the pivot function of the Excel program. As a result, data input using NFC was automated, obtaining a quantitative effect from reducing the operator's data processing time. In addition, using the input data, we present a case where a bottleneck is improved due to quality problems.

Strength and Durability Characteristics of Low-alkali Mortar for Artificial Reefs Produced by 3D Printers (인공어초 3D 프린터 출력을 위한 저알칼리 모르타르의 강도와 내구성능)

  • Lee, Byung-Jae;Kim, Bong-Kyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • Concrete prevents corrosion of reinforcing bars due to its strong alkalinity. However, in the sea, strong alkali components with a pH of 12 to 13 are eluted, which adversely affects the ecological environment and growth of marine organisms. In this study, the mechanical properties and durability of the low alkali mortar were evaluated for the development of a low alkali mortar for the 3D printed artificial reefs. As a result of evaluation of strength characteristics, the α-35 mixture, which were produced with fly ash, silica fume and α-hemihydrate gypsum, satisfied the strength requirement 27 MPa in terms of compressive strength. As a result of pH measurement, it was found that mixing with alpha-type hemihydrate gypsum resulted in minimizing pH due to the the formation of calcium sulfate instead of calcium hydroxide production. As a result of the chloride ion penetration resistance test, the α-35 mixture exhibited the best performance, 3844C. As a result of measuring the length change over time, the α-35 mixture showed the shrinkage 33.5% less compared to the Plain mix.

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.

Penetration behavior by carbon potential in laser-carburized TiZrN coatings (TiZrN 코팅의 레이저 침탄에서 탄소 포텐셜에 따른 침입 거동)

  • Lee, Byunghyun;Kim, Taewoo;Hong, Eunpyo;Kim, Seonghoon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.282-286
    • /
    • 2021
  • Penetration depth and compressive residual stress of laser-carburized TiZrN coating by thickness of carbon paste were investigated in terms of carbon potential. The carbon paste was covered with a thickness of 1.1 mm using screen printing, and applied to a thickness of 0.4 mm using spin coating, and laser carburization was performed under the same conditions. As the thickness of carbon paste increased, the diffraction pattern of the laser-carburized TiZrN coating shifted to a lower angle, indicating solid solution strengthening and lattice distortion. For microstructure analysis using TEM, the defects and carbon concentration of the laser-carburized TiZrN coating increased as the carbon paste was thicker. It indicated that the variation of the carbon potential corresponds to the change in the paste thickness. In XPS depth profile analysis, high concentration of carbon and formation of carbide were observed in laser-carburized TiZrN coating with thick carbon paste. It revealed that the carbon concentration on the surface and carbon potential were changed by the thickness control of carbon paste. The compressive residual stress increased from 3.67 GPa to 4.58 GPa by the variation of carbon concentration.

Effect of Polymer Post-treatment on the Durability of 3D-printed Cement Composites (3D 프린터로 출력된 시멘트 복합체의 내구성에 미치는 폴리머 후처리의 영향)

  • Seo, Ji-Seok;Hyun, Chang-Jin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.20-29
    • /
    • 2022
  • In this study, in order to improve the durability of the cement composite printed with the ME type 3D printer, PDMS, sodium silicate, and a surface hardener were employed. Post-treatment was performed on 3D-printed cement composite by coating after immersion, and the degree of improvement in durability was evaluated. As a result, in all evaluations, the durability performances of the post-processed specimens were improved compared to those of the plain specimens. Water absorption resistance, chloride penetration resistance, and carbonation resistance of the PDMS treated specimens were improved by 36.3 %, 77.1 %, and 50.4 % when compared to plain specimens. Freeze-thaw resistance of the specimens treated with sodium silicate was found to be the most excellent, with an average enhancement of 47.5% compared to plain specimens. It was found that PDMS was the most efficient post-treatment materials for 3D-printed cement composite. However, as suggested in this study, the post-treatment method by coating after immersion may not be applicable to cement composite structures printed with a 3D printer in field. Therefore, a follow-up study needs to be preformed on the durability enhancing materials suitable for 3D printing.

Complete denture rehabilitation utilizing digital process: A case report (디지털 방식을 활용한 양악 총의치 수복 증례)

  • An, Yoojin;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kwon, Kung-Rock;Kim, Hyeong-Seob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.4
    • /
    • pp.313-319
    • /
    • 2022
  • Complete dentures are one of the most basic treatment methods for the treatment of edentulous patients. The manufacturing process of traditional complete dentures goes through the steps of taking primary impressions, secondary impressions, jaw relation record, trying in wax denture, and final denture insertion. Multiple visits and complex manufacturing procedures are required, and errors may occur in each step. With the development of digital technology, manufacturing steps have been reduced by introducing digital technology to the denture treatment process. In the process of manufacturing dentures by introducing a digital process, a more precise work is possible using Computer-Aided Design, and it is possible to shorten the period of labor and reduce the number of visits. In this case, the anterior teeth arrangement of the patient's existing dentures was transferred to the final dentures using a digital method. After taking impression, try-in dentures were digitally fabricated and tried in the oral cavity to evaluate their retention in the oral cavity. Final dentures were manufactured by milling process. The number of visits was reduced, satisfactory retention and stability of dentures were obtained, and aesthetic recovery was achieved.

Full-mouth rehabilitation using digital method to transfer provisional restoration to final fixed implant restoration (디지털 방법을 활용하여 임시수복물을 최종 고정성 임플란트 수복물로 이행한 완전 구강 회복 증례)

  • Cho, Eunhan;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock;Noh, Kwantae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.4
    • /
    • pp.362-373
    • /
    • 2022
  • For a full-mouth fixed prosthetic treatment of the edentulous patient, it is essential to confirm the proper tooth position and thorough evaluation of the remaining alveolar bone and soft tissue before surgery. CAD-CAM dentistry and guided implant surgery have such advantages of providing simultaneous planning of surgery and prosthetic treatment to ensure pre-knowledge of the treatment. In this clinical case, using the digital technology, digital temporary denture fabrication, esthetic evaluation before fixed prostheses treatment, and guided surgery planning was possible. After the surgery, previously obtained data was used for fabricating fixed temporary prostheses. Definitive zirconia prostheses transferred from the provisional prostheses were fabricated and functionally and esthetically satisfying results were obtained.

A Study on the Technological Priorities of Manufacturing and Service Companies for Response to the 4th Industrial Revolution and Transformation into a Smart Company (4차 산업혁명 대응과 스마트 기업으로의 변화를 위한 제조 및 서비스 기업의 기술적용 우선순위에 대한 연구)

  • Park, Chan-Kwon;Seo, Yeong-Bok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.4
    • /
    • pp.83-101
    • /
    • 2021
  • This study is to investigate, using AHP, what technologies should be applied first to Korean SMEs in order to respond to the 4th industrial revolution and change to a smart enterprise. To this end, technologies related to the 4th industrial revolution and smart factory are synthesized, and the classification criteria of Dae-Hoon Kim et al. (2019) are applied, but additional opinions of experts are collected and related technologies are converted to artificial intelligence (AI), Big Data, and Cloud Computing. As a base technology, mobile, Internet of Things (IoT), block chain as hyper-connected technology, unmanned transportation (autonomous driving), robot, 3D printing, drone as a convergence technology, smart manufacturing and logistics, smart healthcare, smart transportation and smart finance were classified as smart industrial technologies. As a result of confirming the priorities for technical use by AHP analysis and calculating the total weight, manufacturing companies have a high ranking in mobile, artificial intelligence (AI), big data, and robots, while service companies are in big data and robots, artificial intelligence (AI), and smart healthcare are ranked high, and in all companies, it is in the order of big data, artificial intelligence (AI), robot, and mobile. Through this study, it was clearly identified which technologies should be applied first in order to respond to the 4th industrial revolution and change to a smart company.